import numpy as np import cv2 from matplotlib import pyplot as plt #http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_feature2d/py_matcher/py_matcher.html def drawMatches(img1, kp1, img2, kp2, matches): """ source: http://stackoverflow.com/questions/20259025/module-object-has-no-attribute-drawmatches-opencv-python My own implementation of cv2.drawMatches as OpenCV 2.4.9 does not have this function available but it's supported in OpenCV 3.0.0 This function takes in two images with their associated keypoints, as well as a list of DMatch data structure (matches) that contains which keypoints matched in which images. An image will be produced where a montage is shown with the first image followed by the second image beside it. Keypoints are delineated with circles, while lines are connected between matching keypoints. img1,img2 - Grayscale images kp1,kp2 - Detected list of keypoints through any of the OpenCV keypoint detection algorithms matches - A list of matches of corresponding keypoints through any OpenCV keypoint matching algorithm """ # Create a new output image that concatenates the two images together # (a.k.a) a montage rows1 = img1.shape[0] cols1 = img1.shape[1] rows2 = img2.shape[0] cols2 = img2.shape[1] out = np.zeros((max([rows1,rows2]),cols1+cols2,3), dtype='uint8') # Place the first image to the left out[:rows1,:cols1] = np.dstack([img1, img1, img1]) # Place the next image to the right of it out[:rows2,cols1:] = np.dstack([img2, img2, img2]) # For each pair of points we have between both images # draw circles, then connect a line between them for mat in matches: # Get the matching keypoints for each of the images img1_idx = mat.queryIdx img2_idx = mat.trainIdx # x - columns # y - rows (x1,y1) = kp1[img1_idx].pt (x2,y2) = kp2[img2_idx].pt # Draw a small circle at both co-ordinates # radius 4 # colour blue # thickness = 1 cv2.circle(out, (int(x1),int(y1)), 4, (255, 0, 0), 1) cv2.circle(out, (int(x2)+cols1,int(y2)), 4, (255, 0, 0), 1) # Draw a line in between the two points # thickness = 1 # colour blue cv2.line(out, (int(x1),int(y1)), (int(x2)+cols1,int(y2)), (255, 0, 0), 1) # Show the image cv2.imshow('Matched Features', out) cv2.waitKey(0) cv2.destroyWindow('Matched Features') # Also return the image if you'd like a copy return out img1 = cv2.imread('blue.png',0) # queryImage img2 = cv2.imread('all.png',0) # trainImage surf = cv2.SURF(400) # find the keypoints and descriptors with SIFT kp1, des1 = surf.detectAndCompute(img1,None) kp2, des2 = surf.detectAndCompute(img2,None) # create BFMatcher object bf = cv2.BFMatcher() # Match descriptors. matches = bf.match(des1,des2) #matches = sorted(matches, key = lambda x:x.distance) drawMatches(img1, kp1, img2, kp2, matches)