Created
September 1, 2016 23:30
-
-
Save ChessPoker/b34c830f1366da8c21a155b2d2f1ce30 to your computer and use it in GitHub Desktop.
Network Config
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| MultiLayerNetwork net; | |
| //two hidden layers of 3 neurons each | |
| final int[] LSTMLayers = new int[]{3,3}; | |
| NeuralNetConfiguration.ListBuilder list = new NeuralNetConfiguration.Builder() | |
| .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).iterations(1) | |
| .learningRate(learningRate) | |
| .regularization(true).l2(0.0000001) | |
| .seed(76692) | |
| .weightInit(WeightInit.XAVIER) | |
| .updater(Updater.ADAM).adamMeanDecay(0.99).adamVarDecay(0.9999) | |
| .list(); | |
| int layerIdx = 0; | |
| for (; layerIdx < LSTMLayers.length; layerIdx++) { | |
| list = list.layer(layerIdx, new GravesLSTM.Builder().nIn(nIn).nOut(LSTMLayers[layerIdx]) | |
| .activation("softsign").build()); | |
| nIn = LSTMLayers[layerIdx]; | |
| } | |
| list.layer(layerIdx++, new RnnOutputLayer.Builder(LossFunctions.LossFunction.MCXENT).activation("softmax") | |
| .nIn(nIn).nOut(nOut).build()); | |
| MultiLayerConfiguration conf = list.pretrain(false).backprop(true).build(); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment