k = 10 n_init = 10 max_iter = 300 kmeans = faiss.Kmeans(d=data.shape[1], k=k, niter=max_iter, nredo=n_init, gpu=True) kmeans.train(data.astype(np.float32)) e = time.time() print("Training time = {}".format(e - s)) s = time.time() kmeans.index.search(data.astype(np.float32), 1)[1] e = time.time() print("Prediction time = {}".format((e - s) / data_size))