from transformers import AutoTokenizer, AutoModel def mean_pooling(model_output, attention_mask): """ Mean pooling to get sentence embeddings. See: https://huggingface.co/sentence-transformers/paraphrase-distilroberta-base-v1 """ token_embeddings = model_output[0] input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) # Sum columns sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask # Fetch the model & tokenizer from transformers library model_name = 'sentence-transformers/stsb-roberta-large' model = AutoModel.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Tokenize input encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=512, return_tensors="pt") # Create word embeddings model_output = model(**encoded_input) # Pool to get sentence embeddings; i.e. generate one 1024 vector for the entire sentence sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']).detach().numpy()