def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')): """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering Args: logits: logits distribution shape (vocabulary size) top_k >0: keep only top k tokens with highest probability (top-k filtering). top_p >0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering). Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751) """ assert logits.dim() == 1 # batch size 1 for now - could be updated for more but the code would be less clear top_k = min(top_k, logits.size(-1)) # Safety check if top_k > 0: # Remove all tokens with a probability less than the last token of the top-k indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None] logits[indices_to_remove] = filter_value if top_p > 0.0: sorted_logits, sorted_indices = torch.sort(logits, descending=True) cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1) # Remove tokens with cumulative probability above the threshold sorted_indices_to_remove = cumulative_probs > top_p # Shift the indices to the right to keep also the first token above the threshold sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone() sorted_indices_to_remove[..., 0] = 0 indices_to_remove = sorted_indices[sorted_indices_to_remove] logits[indices_to_remove] = filter_value return logits # Here is how to use this function for top-p sampling temperature = 1.0 top_k = 0 top_p = 0.9 # Get logits with a forward pass in our model (input is pre-defined) logits = model(input) # Keep only the last token predictions of the first batch item (batch size 1), apply a temperature coefficient and filter logits = logits[0, -1, :] / temperature filtered_logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p) # Sample from the filtered distribution probabilities = F.softmax(filtered_logits, dim=-1) next_token = torch.multinomial(probabilities, 1)