##Deep Network Workbench ###Caffe * [Caffe: a fast open framework for deep learning](https://github.com/BVLC/caffe) * [DIY Deep Learning for Vision: a Hands-On Tutorial with Caffe](https://github.com/BVLC/caffe-tutorial/blob/master/index.md) * [Caffe Model Zoo](https://github.com/BVLC/caffe/wiki/Model-Zoo) * [DeepNetworks by C++](http://blog.csdn.net/linger2012liu/article/category/2146595) //我所写的CNN框架 VS caffe - linger * [Caffe Hands on Notes](https://yufeigan.github.io/) * [深度学习caffe的代码怎么读?](http://www.zhihu.com/question/27982282) * ###Torch, etc * [Torch](http://torch.ch/) ##DQN * https://github.com/deepmind ##@Nvidia.Jetson * [Nvidia.Jetson](https://developer.nvidia.com/get-started-jetson) * [Linux For Tegra Archive](https://developer.nvidia.com/embedded/linux-tegra) * [How to run the Caffe deep learning vision library on Nvidia’s Jetson mobile GPU board](http://petewarden.com/2014/10/25/how-to-run-the-caffe-deep-learning-vision-library-on-nvidias-jetson-mobile-gpu-board/) ##the World's First Makerable Deep Learning Robot integrated with: * Nvidia [Jetson](https://developer.nvidia.com/get-started-jetson) Embedded Tegra Computing * Autonomous Vehicle * Caffe * DQN ##Neuromorphic Processing: A New Frontier in Scaling Computer Architecture * [qualcomm zeroth](https://www.qualcomm.com/invention/cognitive-technologies/zeroth) * https://www.qualcomm.com/invention/cognitive-technologies * [体系结构研究者眼中的神经网络硬件](http://mp.weixin.qq.com/s?__biz=MzA4MjE5NjAzMg==&mid=208687334&idx=1&sn=b6f6cfd24d484c835738a6cbb8376f76&scene=1&from=singlemessage&isappinstalled=0#rd) * [计算所的DianNao和DaDianNao为什么能连续斩获ASPLOS'14和MICRO'14的Best Paper?](http://www.zhihu.com/question/29269842/answer/55912804) * CM1K * http://techcrunch.com/2015/01/31/the-ongoing-quest-for-the-brain-chip/ * https://www.indiegogo.com/projects/braincard-pattern-recognition-for-all#/story * http://neuromorthings.com/#about ###Open Problems Several problems to address * 以下问题相互递进 * 如何主动发现问题解决问题 * 如何使用先验知识,将先验知识转移进网络中 * 已训练的网络训练新知的过程怎样变迁 * 深度神经网络的数据通量 * 数据接口带宽,存储量 * * 深度硬件,运动控制,时间序列,小脑神经网络,Sequential Deep Learning,Deep time series - Currently state of the art but...([Scyfer, Universiteit van Amsterdam spin off](http://scyfer.nl/wp-content/uploads/2014/06/Neural-Networks-and-Deep-Learning-1.pdf)) - No way of doing logical inference (extrapolation) - No easy integration of abstract knowledge - Hypothetic space bias might not conform with realityWhen to apply Deep * 看上去一切触手可及对不对?可是我们离真正的人工智能还有多远呢?至少还需要有两三个这样的变革吧 [zhihu](http://www.zhihu.com/question/31430100/answer/51997378) ##News * [New ‘deep learning’ technique enables robot mastery of skills via trial and error](http://news.berkeley.edu/2015/05/21/deep-learning-robot-masters-skills-via-trial-and-error/), UC Berkeley