I hereby claim:
- I am robblackwell on github.
- I am robblackwell (https://keybase.io/robblackwell) on keybase.
- I have a public key ASCKTiK-mr2e19Jzs6EwX2MserBJYFoa0_EY1j7gEhXNUAo
To claim this, I am signing this object:
I hereby claim:
To claim this, I am signing this object:
| /* | |
| Si5351 VFO | |
| By LA3PNA 27 March 2015 | |
| Modified by NT7S 25 April 2015 | |
| Modified to be Si5351 Arduino v2 compliant by NT7S 21 Nov 2016 | |
| Added LiquidCrystal_I2C support, M0NIL, December 2020. |
| using Glob | |
| using CSVFiles | |
| using DataFrames | |
| filenames = glob("*.csv") | |
| function load_dataframes(filenames) | |
| df = DataFrame(CSVFiles.load(filenames[1])) | |
| for filename in filenames[2:end] | |
| df2 = DataFrame(CSVFiles.load(filename)) |
| """ | |
| column_vectors(A) | |
| Given a two dimensional array `A` of size `m` x `n`, return an array | |
| of `n` vectors being the columns in `A`. Each vector is of length `m`. | |
| """ | |
| function column_vectors(A) | |
| m,n = size(A) | |
| [A[:,i] for i in 1:n] |
| using PyCall | |
| @pyimport pickle | |
| # This works for complex objects such as Scikit learn models. REB | |
| # 20171129 | |
| function mypickle(filename, obj) | |
| out = open(filename,"w") | |
| pickle.dump(obj, out) | |
| close(out) |
| """ | |
| freedman_diaconis(x) | |
| Estimates the required bin width for the distribution x. | |
| Freedman, D. and Diaconis, P., 1981. On the histogram as a density | |
| estimator: L 2 theory. Zeitschrift für Wahrscheinlichkeitstheorie und | |
| verwandte Gebiete, 57(4), pp.453-476. | |
| """ |
| const MATLAB_EPOCH = Dates.DateTime(-0001,12,31) | |
| """ | |
| datenum(d::Dates.DateTime) | |
| Converts a Julia DateTime to a MATLAB style DateNumber. | |
| MATLAB represents time as DateNumber, a double precision floating | |
| point number being the the number of days since January 0, 0000 |
| using MAT | |
| function mymatread(filename, varname) | |
| file = matopen(filename) | |
| x = read(file, varname) | |
| close(file) | |
| return x | |
| end |
| using PerceptualColourMaps | |
| using Images | |
| function myimagesc(A) | |
| x = minimum(A) | |
| y = maximum(A) | |
| B = (A .- x) ./ (y - x) | |
| imgc = applycolormap(B, cmap("R3")) # outputs a 3-dimensional array | |
| imgc2 = colorview(RGB, permuteddimsview(imgc, (3,1,2))) | |
| end |