CUSTOM_OUTPUT_CATEGORIES = 2 import keras.backend as K from keras.engine.topology import Layer class SpatialPyramidPooling(Layer): '''Spatial pyramid pooling layer for 2D inputs. See Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition, K. He, X. Zhang, S. Ren, J. Sun # Arguments pool_list: list of int List of pooling regions to use. The length of the list is the number of pooling regions, each int in the list is the number of regions in that pool. For example [1,2,4] would be 3 regions with 1, 2x2 and 4x4 max pools, so 21 outputs per feature map # Input shape 4D tensor with shape: `(samples, channels, rows, cols)` if dim_ordering='th' or 4D tensor with shape: `(samples, rows, cols, channels)` if dim_ordering='tf'. # Output shape 2D tensor with shape: `(samples, channels * sum([i * i for i in pool_list])` ''' def __init__(self, pool_list, **kwargs): self.dim_ordering = K.image_dim_ordering() assert self.dim_ordering in {'tf', 'th'}, 'dim_ordering must be in {tf, th}' self.pool_list = pool_list self.num_outputs_per_channel = sum([i * i for i in pool_list]) super(SpatialPyramidPooling, self).__init__(**kwargs) def build(self, input_shape): if self.dim_ordering == 'th': self.nb_channels = input_shape[1] elif self.dim_ordering == 'tf': self.nb_channels = input_shape[3] def get_output_shape_for(self, input_shape): return (input_shape[0], self.nb_channels * self.num_outputs_per_channel) def get_config(self): config = {'pool_list': self.pool_list} base_config = super(SpatialPyramidPooling, self).get_config() return dict(list(base_config.items()) + list(config.items())) def call(self, x, mask=None): input_shape = K.shape(x) if self.dim_ordering == 'th': num_rows = input_shape[2] num_cols = input_shape[3] elif self.dim_ordering == 'tf': num_rows = input_shape[1] num_cols = input_shape[2] row_length = [K.cast(num_rows, 'float32') / i for i in self.pool_list] col_length = [K.cast(num_cols, 'float32') / i for i in self.pool_list] outputs = [] if self.dim_ordering == 'th': for pool_num, num_pool_regions in enumerate(self.pool_list): for jy in range(num_pool_regions): for ix in range(num_pool_regions): x1 = ix * col_length[pool_num] x2 = ix * col_length[pool_num] + col_length[pool_num] y1 = jy * row_length[pool_num] y2 = jy * row_length[pool_num] + row_length[pool_num] x1 = K.cast(K.round(x1), 'int32') x2 = K.cast(K.round(x2), 'int32') y1 = K.cast(K.round(y1), 'int32') y2 = K.cast(K.round(y2), 'int32') new_shape = [input_shape[0], input_shape[1], y2 - y1, x2 - x1] x_crop = x[:, :, y1:y2, x1:x2] xm = K.reshape(x_crop, new_shape) pooled_val = K.max(xm, axis=(2, 3)) outputs.append(pooled_val) elif self.dim_ordering == 'tf': for pool_num, num_pool_regions in enumerate(self.pool_list): for jy in range(num_pool_regions): for ix in range(num_pool_regions): x1 = ix * col_length[pool_num] x2 = ix * col_length[pool_num] + col_length[pool_num] y1 = jy * row_length[pool_num] y2 = jy * row_length[pool_num] + row_length[pool_num] x1 = K.cast(K.round(x1), 'int32') x2 = K.cast(K.round(x2), 'int32') y1 = K.cast(K.round(y1), 'int32') y2 = K.cast(K.round(y2), 'int32') new_shape = [input_shape[0], y2 - y1, x2 - x1, input_shape[3]] x_crop = x[:, y1:y2, x1:x2, :] xm = K.reshape(x_crop, new_shape) pooled_val = K.max(xm, axis=(1, 2)) outputs.append(pooled_val) if self.dim_ordering == 'th': outputs = K.concatenate(outputs) elif self.dim_ordering == 'tf': # outputs = K.concatenate(outputs,axis = 1) outputs = K.concatenate(outputs) # outputs = K.reshape(outputs,(len(self.pool_list),self.num_outputs_per_channel,input_shape[0],input_shape[1])) # outputs = K.permute_dimensions(outputs,(3,1,0,2)) # outputs = K.reshape(outputs,(input_shape[0], self.num_outputs_per_channel * self.nb_channels)) return outputs def Spp(): # uses theano ordering. Note that we leave the image size as None to allow multiple image sizes model = Sequential() model.add(Convolution2D(96, 11, 11, border_mode='same', input_shape=(3, None, None), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Convolution2D(32, 3, 3, activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Convolution2D(64, 3, 3, border_mode='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(SpatialPyramidPooling([1, 2, 4])) model.add(Dense(4096, activation='relu', name='dense_1')) model.add(Dropout(0.5)) model.add(Dense(4096, activation='relu', name='dense_2')) model.add(Dropout(0.5)) model.add(Dense(CUSTOM_OUTPUT_CATEGORIES, name='dense_3')) model.add(Activation('softmax')) return model