from keras.models import Sequential from keras.layers import Dense x, y = ... x_val, y_val = ... # 1-dimensional MSE linear regression in Keras model = Sequential() model.add(Dense(1, input_dim=x.shape[1])) model.compile(optimizer='rmsprop', loss='mse') model.fit(x, y, nb_epoch=10, validation_data=(x_val, y_val)) # 2-class logistic regression in Keras model = Sequential() model.add(Dense(1, activation='sigmoid', input_dim=x.shape[1])) model.compile(optimizer='rmsprop', loss='binary_crossentropy') model.fit(x, y, nb_epoch=10, validation_data=(x_val, y_val)) # logistic regression with L1 and L2 regularization from keras.regularizers import l1l2 reg = l1l2(l1=0.01, l2=0.01) model = Sequential() model.add(Dense(1, activation='sigmoid', W_regularizer=reg, input_dim=x.shape[1])) model.compile(optimizer='rmsprop', loss='binary_crossentropy') model.fit(x, y, nb_epoch=10, validation_data=(x_val, y_val))