""" To use: install LLM studio (or Ollama), clone OpenVoice, run this script in the OpenVoice directory git clone https://github.com/myshell-ai/OpenVoice cd OpenVoice git clone https://huggingface.co/myshell-ai/OpenVoice cp -r OpenVoice/* . brew install portaudio brew install git-lfs git lfs install conda create -n sts python=3.10 conda activate sts pip install -r requirements.txt whisper==1.1.10 pynput==1.7.6 pyaudio==0.2.14 openai==1.12.0 numpy==1.26.4 torch==2.2.0 librosa==0.10.1 pydub==0.25.1 faster_whisper==0.10.0 whisper_timestamped==1.14.4 inflect==7.0.0 unidecode==1.3.8 env_to_ipa==0.0.2 pypinyin==0.50.0 jieba==0.42.1 cn2an==0.5.22 wavmark==0.0.3 """ from openai import OpenAI import time import pyaudio import numpy as np import torch import os import re import se_extractor import whisper from pynput import keyboard from api import BaseSpeakerTTS, ToneColorConverter from utils import split_sentences_latin SYSTEM_MESSAGE = "You are Bob an AI assistant. KEEP YOUR RESPONSES VERY SHORT AND CONVERSATIONAL." SPEAKER_WAV = None llm_client = OpenAI(base_url="http://localhost:11434/v1", api_key="not-needed") tts_en_ckpt_base = os.path.join(os.path.dirname(__file__), "checkpoints/base_speakers/EN") tts_ckpt_converter = os.path.join(os.path.dirname(__file__), "checkpoints/converter") device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" tts_model = BaseSpeakerTTS(f'{tts_en_ckpt_base}/config.json', device=device) tts_model.load_ckpt(f'{tts_en_ckpt_base}/checkpoint.pth') tone_color_converter = ToneColorConverter(f'{tts_ckpt_converter}/config.json', device=device) tone_color_converter.load_ckpt(f'{tts_ckpt_converter}/checkpoint.pth') en_source_default_se = torch.load(f"{tts_en_ckpt_base}/en_default_se.pth").to(device) target_se, _ = se_extractor.get_se(SPEAKER_WAV, tone_color_converter, target_dir='processed', vad=True) if SPEAKER_WAV else (None, None) sampling_rate = tts_model.hps.data.sampling_rate mark = tts_model.language_marks.get("english", None) asr_model = whisper.load_model("base.en") def play_audio(text): p = pyaudio.PyAudio() stream = p.open(format=pyaudio.paFloat32, channels=1, rate=sampling_rate, output=True) texts = split_sentences_latin(text) for t in texts: audio_list = [] t = re.sub(r'([a-z])([A-Z])', r'\1 \2', t) t = f'[{mark}]{t}[{mark}]' stn_tst = tts_model.get_text(t, tts_model.hps, False) with torch.no_grad(): x_tst = stn_tst.unsqueeze(0).to(tts_model.device) x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(tts_model.device) sid = torch.LongTensor([tts_model.hps.speakers["default"]]).to(tts_model.device) audio = tts_model.model.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=0.667, noise_scale_w=0.6)[0][0, 0].data.cpu().float().numpy() if target_se is not None: audio = tone_color_converter.convert_from_tensor(audio=audio, src_se=en_source_default_se, tgt_se=target_se) audio_list.append(audio) data = tts_model.audio_numpy_concat(audio_list, sr=sampling_rate).tobytes() stream.write(data) stream.stop_stream() stream.close() p.terminate() def record_and_transcribe_audio(): recording = False def on_press(key): nonlocal recording if key == keyboard.Key.shift: recording = True def on_release(key): nonlocal recording if key == keyboard.Key.shift: recording = False return False listener = keyboard.Listener( on_press=on_press, on_release=on_release) listener.start() print('Press shift to record...') while not recording: time.sleep(0.1) print('Start recording...') p = pyaudio.PyAudio() stream = p.open(format=pyaudio.paInt16, channels=1, rate=16000, frames_per_buffer=1024, input=True) frames = [] while recording: data = stream.read(1024, exception_on_overflow = False) frames.append(np.frombuffer(data, dtype=np.int16)) print('Finished recording') data = np.hstack(frames, dtype=np.float32) / 32768.0 result = asr_model.transcribe(data)['text'] stream.stop_stream() stream.close() p.terminate() return result def conversation(): conversation_history = [{'role': 'system', 'content': SYSTEM_MESSAGE}] while True: user_input = record_and_transcribe_audio() conversation_history.append({'role': 'user', 'content': user_input}) response = llm_client.chat.completions.create(model="mixtral", messages=conversation_history) chatbot_response = response.choices[0].message.content conversation_history.append({'role': 'assistant', 'content': chatbot_response}) print(conversation_history) play_audio(chatbot_response) if len(conversation_history) > 20: conversation_history = conversation_history[-20:] conversation()