- word2vec https://arxiv.org/abs/1310.4546 - sentence2vec, paragraph2vec, doc2vec http://arxiv.org/abs/1405.4053 - tweet2vec http://arxiv.org/abs/1605.03481 - tweet2vec https://arxiv.org/abs/1607.07514 - author2vec http://dl.acm.org/citation.cfm?id=2889382 - item2vec http://arxiv.org/abs/1603.04259 - lda2vec https://arxiv.org/abs/1605.02019 - illustration2vec http://dl.acm.org/citation.cfm?id=2820907 - tag2vec http://ktsaurabh.weebly.com/uploads/3/1/7/8/31783965/distributed_representations_for_content-based_and_personalized_tag_recommendation.pdf - category2vec http://www.anlp.jp/proceedings/annual_meeting/2015/pdf_dir/C4-3.pdf - topic2vec http://arxiv.org/abs/1506.08422 - image2vec http://arxiv.org/abs/1507.08818 - app2vec http://paul.rutgers.edu/~qma/research/ma_app2vec.pdf - prod2vec http://dl.acm.org/citation.cfm?id=2788627 - meta-prod2vec http://arxiv.org/abs/1607.07326 - sense2vec http://arxiv.org/abs/1511.06388 - node2vec http://www.kdd.org/kdd2016/papers/files/Paper_218.pdf - subgraph2vec http://arxiv.org/abs/1606.08928 - wordnet2vec http://arxiv.org/abs/1606.03335 - doc2sent2vec http://research.microsoft.com/apps/pubs/default.aspx?id=264430 - context2vec http://u.cs.biu.ac.il/~melamuo/publications/context2vec_conll16.pdf - rdf2vec http://iswc2016.semanticweb.org/pages/program/accepted-papers.html#research_ristoski_32 - hash2vec http://arxiv.org/abs/1608.08940 - query2vec http://www.cs.cmu.edu/~dongyeok/papers/query2vec_v0.2.pdf - gov2vec http://arxiv.org/abs/1609.06616 - novel2vec http://aics2016.ucd.ie/papers/full/AICS_2016_paper_48.pdf - emoji2vec http://arxiv.org/abs/1609.08359 - video2vec https://staff.fnwi.uva.nl/t.e.j.mensink/publications/habibian16pami.pdf - sen2vec https://arxiv.org/abs/1610.08078 - content2vec http://104.155.136.4:3000/forum?id=ryTYxh5ll - cat2vec http://104.155.136.4:3000/forum?id=HyNxRZ9xg - diet2vec https://arxiv.org/abs/1612.00388 - mention2vec https://arxiv.org/abs/1612.02706 - POI2vec http://www.ntu.edu.sg/home/boan/papers/AAAI17_Visitor.pdf - wang2vec http://www.cs.cmu.edu/~lingwang/papers/naacl2015.pdf - dna2vec https://arxiv.org/abs/1701.06279 - pin2vec https://labs.pinterest.com/assets/paper/p2p-www17.pdf, ([cited blog](https://medium.com/the-graph/applying-deep-learning-to-related-pins-a6fee3c92f5e#.erb1i5mze) - paper2vec https://arxiv.org/abs/1703.06587 # option anything2anything model - vec2topic http://arxiv.org/abs/1603.04747 - character2word http://arxiv.org/abs/1508.02096