Created
April 26, 2025 06:38
-
-
Save alexlib/15a2334103f42dd0edbf11c7071f3bc4 to your computer and use it in GitHub Desktop.
Revisions
-
alexlib created this gist
Apr 26, 2025 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,14 @@ ``` test_inpaint_equivalence.py .. ---------------------------------------------------------------------- Ran 2 tests in 1.908s OK (.conda) user@user-NUC8i7BEH:~/Documents/repos/OpenOpticalFlow_PIV_v1$ /home/user/Documents/repos/OpenOpticalFlow_PIV_v1/.conda/bin/python /home/user/Documents/repos/OpenOpticalFlow_PIV_v1/test_inpaint_equivalence.py .. ---------------------------------------------------------------------- Ran 2 tests in 1.504s OK ``` This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,19 @@ import numpy as np from scipy.interpolate import griddata def inpaint_nans_3d(array): # Get coordinates of non-nan values valid_mask = ~np.isnan(array) coords = np.array(np.nonzero(valid_mask)).T values = array[valid_mask] # Get coordinates of nan values nan_coords = np.array(np.nonzero(~valid_mask)).T # Interpolate filled_values = griddata(coords, values, nan_coords, method='linear') # Create output array and fill with interpolated values result = array.copy() result[~valid_mask] = filled_values return result This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,287 @@ function B=inpaint_nans3(A,method) % INPAINT_NANS3: in-paints over nans in a 3-D array % usage: B=INPAINT_NANS3(A) % default method (0) % usage: B=INPAINT_NANS3(A,method) % specify method used % % Solves approximation to a boundary value problem to % interpolate and extrapolate holes in a 3-D array. % % Note that if the array is large, and there are many NaNs % to be filled in, this may take a long time, or run into % memory problems. % % arguments (input): % A - n1 x n2 x n3 array with some NaNs to be filled in % % method - (OPTIONAL) scalar numeric flag - specifies % which approach (or physical metaphor to use % for the interpolation.) All methods are capable % of extrapolation, some are better than others. % There are also speed differences, as well as % accuracy differences for smooth surfaces. % % method 0 uses a simple plate metaphor. % method 1 uses a spring metaphor. % % method == 0 --> (DEFAULT) Solves the Laplacian % equation over the set of nan elements in the % array. % Extrapolation behavior is roughly linear. % % method == 1 --+ Uses a spring metaphor. Assumes % springs (with a nominal length of zero) % connect each node with every neighbor % (horizontally, vertically and diagonally) % Since each node tries to be like its neighbors, % extrapolation is roughly a constant function where % this is consistent with the neighboring nodes. % % There are only two different methods in this code, % chosen as the most useful ones (IMHO) from my % original inpaint_nans code. % % % arguments (output): % B - n1xn2xn3 array with NaNs replaced % % % Example: % % A linear function of 3 independent variables, % % used to test whether inpainting will interpolate % % the missing elements correctly. % [x,y,z] = ndgrid(-10:10,-10:10,-10:10); % W = x + y + z; % % % Pick a set of distinct random elements to NaN out. % ind = unique(ceil(rand(3000,1)*numel(W))); % Wnan = W; % Wnan(ind) = NaN; % % % Do inpainting % Winp = inpaint_nans3(Wnan,0); % % % Show that the inpainted values are essentially % % within eps of the originals. % std(Winp(ind) - W(ind)) % ans = % 4.3806e-15 % % % See also: griddatan, inpaint_nans % % Author: John D'Errico % e-mail address: [email protected] % Release: 1 % Release date: 8/21/08 % Need to know which elements are NaN, and % what size is the array. Unroll A for the % inpainting, although inpainting will be done % fully in 3-d. NA = size(A); A = A(:); nt = prod(NA); k = isnan(A(:)); % list the nodes which are known, and which will % be interpolated nan_list=find(k); known_list=find(~k); % how many nans overall nan_count=length(nan_list); % convert NaN indices to (r,c) form % nan_list==find(k) are the unrolled (linear) indices % (row,column) form [n1,n2,n3]=ind2sub(NA,nan_list); % both forms of index for all the nan elements in one array: % column 1 == unrolled index % column 2 == index 1 % column 3 == index 2 % column 4 == index 3 nan_list=[nan_list,n1,n2,n3]; % supply default method if (nargin<2) || isempty(method) method = 0; elseif ~ismember(method,[0 1]) error 'If supplied, method must be one of: {0,1}.' end % alternative methods switch method case 0 % The same as method == 1, except only work on those % elements which are NaN, or at least touch a NaN. % horizontal and vertical neighbors only talks_to = [-1 0 0;1 0 0;0 -1 0;0 1 0;0 0 -1;0 0 1]; neighbors_list=identify_neighbors(NA,nan_list,talks_to); % list of all nodes we have identified all_list=[nan_list;neighbors_list]; % generate sparse array with second partials on row % variable for each element in either list, but only % for those nodes which have a row index > 1 or < n L = find((all_list(:,2) > 1) & (all_list(:,2) < NA(1))); nL=length(L); if nL>0 fda=sparse(repmat(all_list(L,1),1,3), ... repmat(all_list(L,1),1,3)+repmat([-1 0 1],nL,1), ... repmat([1 -2 1],nL,1),nt,nt); else fda=spalloc(nt,nt,size(all_list,1)*7); end % 2nd partials on column index L = find((all_list(:,3) > 1) & (all_list(:,3) < NA(2))); nL=length(L); if nL>0 fda=fda+sparse(repmat(all_list(L,1),1,3), ... repmat(all_list(L,1),1,3)+repmat([-NA(1) 0 NA(1)],nL,1), ... repmat([1 -2 1],nL,1),nt,nt); end % 2nd partials on third index L = find((all_list(:,4) > 1) & (all_list(:,4) < NA(3))); nL=length(L); if nL>0 ntimesm = NA(1)*NA(2); fda=fda+sparse(repmat(all_list(L,1),1,3), ... repmat(all_list(L,1),1,3)+repmat([-ntimesm 0 ntimesm],nL,1), ... repmat([1 -2 1],nL,1),nt,nt); end % eliminate knowns rhs=-fda(:,known_list)*A(known_list); k=find(any(fda(:,nan_list(:,1)),2)); % and solve... B=A; B(nan_list(:,1))=fda(k,nan_list(:,1))\rhs(k); case 1 % Spring analogy % interpolating operator. % list of all springs between a node and a horizontal % or vertical neighbor hv_list=[-1 -1 0 0;1 1 0 0;-NA(1) 0 -1 0;NA(1) 0 1 0; ... -NA(1)*NA(2) 0 0 -1;NA(1)*NA(2) 0 0 1]; hv_springs=[]; for i=1:size(hv_list,1) hvs=nan_list+repmat(hv_list(i,:),nan_count,1); k=(hvs(:,2)>=1) & (hvs(:,2)<=NA(1)) & ... (hvs(:,3)>=1) & (hvs(:,3)<=NA(2)) & ... (hvs(:,4)>=1) & (hvs(:,4)<=NA(3)); hv_springs=[hv_springs;[nan_list(k,1),hvs(k,1)]]; end % delete replicate springs hv_springs=unique(sort(hv_springs,2),'rows'); % build sparse matrix of connections nhv=size(hv_springs,1); springs=sparse(repmat((1:nhv)',1,2),hv_springs, ... repmat([1 -1],nhv,1),nhv,prod(NA)); % eliminate knowns rhs=-springs(:,known_list)*A(known_list); % and solve... B=A; B(nan_list(:,1))=springs(:,nan_list(:,1))\rhs; end % all done, make sure that B is the same shape as % A was when we came in. B=reshape(B,NA); % ==================================================== % end of main function % ==================================================== % ==================================================== % begin subfunctions % ==================================================== function neighbors_list=identify_neighbors(NA,nan_list,talks_to) % identify_neighbors: identifies all the neighbors of % those nodes in nan_list, not including the nans % themselves % % arguments (input): % NA - 1x3 vector = size(A), where A is the % array to be interpolated % nan_list - array - list of every nan element in A % nan_list(i,1) == linear index of i'th nan element % nan_list(i,2) == row index of i'th nan element % nan_list(i,3) == column index of i'th nan element % nan_list(i,4) == third index of i'th nan element % talks_to - px2 array - defines which nodes communicate % with each other, i.e., which nodes are neighbors. % % talks_to(i,1) - defines the offset in the row % dimension of a neighbor % talks_to(i,2) - defines the offset in the column % dimension of a neighbor % % For example, talks_to = [-1 0;0 -1;1 0;0 1] % means that each node talks only to its immediate % neighbors horizontally and vertically. % % arguments(output): % neighbors_list - array - list of all neighbors of % all the nodes in nan_list if ~isempty(nan_list) % use the definition of a neighbor in talks_to nan_count=size(nan_list,1); talk_count=size(talks_to,1); nn=zeros(nan_count*talk_count,3); j=[1,nan_count]; for i=1:talk_count nn(j(1):j(2),:)=nan_list(:,2:4) + ... repmat(talks_to(i,:),nan_count,1); j=j+nan_count; end % drop those nodes which fall outside the bounds of the % original array L = (nn(:,1)<1) | (nn(:,1)>NA(1)) | ... (nn(:,2)<1) | (nn(:,2)>NA(2)) | ... (nn(:,3)<1) | (nn(:,3)>NA(3)); nn(L,:)=[]; % form the same format 4 column array as nan_list neighbors_list=[sub2ind(NA,nn(:,1),nn(:,2),nn(:,3)),nn]; % delete replicates in the neighbors list neighbors_list=unique(neighbors_list,'rows'); % and delete those which are also in the list of NaNs. neighbors_list=setdiff(neighbors_list,nan_list,'rows'); else neighbors_list=[]; end This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,16 @@ % Load the test data generated by Python load('test_data.mat'); % Verify the data shape size_data = size(data_with_nans); fprintf('Input data size: %dx%dx%d\n', size_data(1), size_data(2), size_data(3)); % Run inpaint_nans3 inpainted_data = inpaint_nans3(data_with_nans, 0); % Verify the output shape size_result = size(inpainted_data); fprintf('Output data size: %dx%dx%d\n', size_result(1), size_result(2), size_result(3)); % Save the results for Python to read save('matlab_result.mat', 'inpainted_data'); This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,76 @@ import numpy as np import scipy.io as sio import matplotlib.pyplot as plt from inpaint3d import inpaint_nans_3d def generate_test_data(shape=(20, 20, 20)): """Generate test data with known NaN positions""" # Create a 3D test array with a known pattern x, y, z = np.meshgrid(np.linspace(-2, 2, shape[0]), np.linspace(-2, 2, shape[1]), np.linspace(-2, 2, shape[2])) data = np.sin(x) * np.cos(y) * np.exp(-0.1 * (x**2 + y**2 + z**2)) # Add NaN values randomly nan_mask = np.random.random(data.shape) < 0.3 data_with_nans = data.copy() data_with_nans[nan_mask] = np.nan return data, data_with_nans, nan_mask def compare_results(original, matlab_result, python_result): """Compare the results between MATLAB and Python implementations""" # Calculate error metrics matlab_error = np.nanmean(np.abs(original - matlab_result)) python_error = np.nanmean(np.abs(original - python_result)) difference = np.nanmean(np.abs(matlab_result - python_result)) print(f"Mean Absolute Error (MATLAB): {matlab_error:.6f}") print(f"Mean Absolute Error (Python): {python_error:.6f}") print(f"Mean Difference between implementations: {difference:.6f}") # Visualize middle slices mid_slice = original.shape[2] // 2 fig, axes = plt.subplots(2, 2, figsize=(12, 10)) axes[0,0].imshow(original[:,:,mid_slice]) axes[0,0].set_title('Original') axes[0,1].imshow(matlab_result[:,:,mid_slice]) axes[0,1].set_title('MATLAB Result') axes[1,0].imshow(python_result[:,:,mid_slice]) axes[1,0].set_title('Python Result') diff = np.abs(matlab_result - python_result) axes[1,1].imshow(diff[:,:,mid_slice]) axes[1,1].set_title('Absolute Difference') plt.tight_layout() plt.show() def main(): # Generate test data original, data_with_nans, nan_mask = generate_test_data() # Save test data for MATLAB sio.savemat('test_data.mat', {'data_with_nans': data_with_nans}) # Run Python implementation python_result = inpaint_nans_3d(data_with_nans) # Load MATLAB results (after running MATLAB script) try: matlab_data = sio.loadmat('matlab_result.mat') matlab_result = matlab_data['inpainted_data'] # Compare results compare_results(original, matlab_result, python_result) except FileNotFoundError: print("MATLAB results not found. Please run the MATLAB script first.") if __name__ == "__main__": main() This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,75 @@ import unittest import numpy as np import scipy.io as sio from inpaint3d import inpaint_nans_3d def generate_test_data(shape=(20, 20, 20)): """Generate test data with known NaN positions""" # Create a 3D test array with a known pattern x, y, z = np.meshgrid(np.linspace(-2, 2, shape[0]), np.linspace(-2, 2, shape[1]), np.linspace(-2, 2, shape[2])) data = np.sin(x) * np.cos(y) * np.exp(-0.1 * (x**2 + y**2 + z**2)) # Add NaN values randomly np.random.seed(42) # For reproducibility nan_mask = np.random.random(data.shape) < 0.3 data_with_nans = data.copy() data_with_nans[nan_mask] = np.nan return data, data_with_nans, nan_mask class TestInpaintEquivalence(unittest.TestCase): def setUp(self): # Use the same shape as in test_inpaint_comparison.py self.shape = (20, 20, 20) self.original, self.data_with_nans, _ = generate_test_data(self.shape) # Save for MATLAB sio.savemat('test_data.mat', {'data_with_nans': self.data_with_nans}) def test_results_close_to_original(self): """Test if both implementations give results close to original data""" # Run Python implementation python_result = inpaint_nans_3d(self.data_with_nans) try: # Load MATLAB results matlab_data = sio.loadmat('matlab_result.mat') matlab_result = matlab_data['inpainted_data'] # Verify shapes match self.assertEqual(matlab_result.shape, self.original.shape, "MATLAB result shape doesn't match original data shape") # Test if results are close to original (within 5% error) python_error = np.nanmean(np.abs(self.original - python_result)) matlab_error = np.nanmean(np.abs(self.original - matlab_result)) self.assertLess(python_error, 0.05) self.assertLess(matlab_error, 0.05) except FileNotFoundError: self.skipTest("MATLAB results file not found. Run MATLAB script first.") def test_implementations_equivalent(self): """Test if both implementations give similar results""" python_result = inpaint_nans_3d(self.data_with_nans) try: matlab_data = sio.loadmat('matlab_result.mat') matlab_result = matlab_data['inpainted_data'] # Verify shapes match self.assertEqual(matlab_result.shape, python_result.shape, "MATLAB and Python results have different shapes") # Test if results are within 1% of each other difference = np.nanmean(np.abs(matlab_result - python_result)) self.assertLess(difference, 0.01) except FileNotFoundError: self.skipTest("MATLAB results file not found. Run MATLAB script first.") if __name__ == '__main__': unittest.main()