#List unique values in a DataFrame column pd.unique(df.column_name.ravel()) #Convert Series datatype to numeric, getting rid of any non-numeric values df['col'] = df['col'].astype(str).convert_objects(convert_numeric=True) #Grab DataFrame rows where column has certain values valuelist = ['value1', 'value2', 'value3'] df = df[df.column.isin(valuelist)] #Grab DataFrame rows where column doesn't have certain values valuelist = ['value1', 'value2', 'value3'] df = df[~df.column.isin(value_list)] #Delete column from DataFrame del df['column'] #Select from DataFrame using criteria from multiple columns newdf = df[(df['column_one']>2004) & (df['column_two']==9)] #Rename several DataFrame columns df = df.rename(columns = { 'col1 old name':'col1 new name', 'col2 old name':'col2 new name', 'col3 old name':'col3 new name', }) #lower-case all DataFrame column names df.columns = map(str.lower, df.columns) #even more fancy DataFrame column re-naming #lower-case all DataFrame column names (for example) df.rename(columns=lambda x: x.split('.')[-1], inplace=True) #Loop through rows in a DataFrame #(if you must) for index, row in df.iterrows(): print index, row['some column'] #Next few examples show how to work with text data in Pandas. #Full list of .str functions: http://pandas.pydata.org/pandas-docs/stable/text.html #Slice values in a DataFrame column (aka Series) df.column.str[0:2] #Lower-case everything in a DataFrame column df.column_name = df.column_name.str.lower() #Get length of data in a DataFrame column df.column_name.str.len() #Sort dataframe by multiple columns df = df.sort(['col1','col2','col3'],ascending=[1,1,0]) #get top n for each group of columns in a sorted dataframe #(make sure dataframe is sorted first) top5 = df.groupby(['groupingcol1', 'groupingcol2']).head(5) #Grab DataFrame rows where specific column is null/notnull newdf = df[df['column'].isnull()] #select from DataFrame using multiple keys of a hierarchical index df.xs(('index level 1 value','index level 2 value'), level=('level 1','level 2')) #Change all NaNs to None (useful before #loading to a db) df = df.where((pd.notnull(df)), None) #Get quick count of rows in a DataFrame len(df.index) #Pivot data (with flexibility about what what #becomes a column and what stays a row). #Syntax works on Pandas >= .14 pd.pivot_table( df,values='cell_value', index=['col1', 'col2', 'col3'], #these stay as columns columns=['col4']) #data values in this column become their own column #change data type of DataFrame column df.column_name = df.column_name.astype(np.int64) # Get rid of non-numeric values throughout a DataFrame: for col in refunds.columns.values: refunds[col] = refunds[col].replace('[^0-9]+.-', '', regex=True) #Set DataFrame column values based on other column values df['column_to_change'][(df['column1'] == some_value) & (df['column2'] == some_other_value)] = new_value #Clean up missing values in multiple DataFrame columns df = df.fillna({ 'col1': 'missing', 'col2': '99.999', 'col3': '999', 'col4': 'missing', 'col5': 'missing', 'col6': '99' }) #Concatenate two DataFrame columns into a new, single column #(useful when dealing with composite keys, for example) df['newcol'] = df['col1'].map(str) + df['col2'].map(str) #Doing calculations with DataFrame columns that have missing values #In example below, swap in 0 for df['col1'] cells that contain null df['new_col'] = np.where(pd.isnull(df['col1']),0,df['col1']) + df['col2'] # Split delimited values in a DataFrame column into two new columns df['new_col1'], df['new_col2'] = zip(*df['original_col'].apply(lambda x: x.split(': ', 1))) # Collapse hierarchical column indexes df.columns = df.columns.get_level_values(0) #Convert Django queryset to DataFrame qs = DjangoModelName.objects.all() q = qs.values() df = pd.DataFrame.from_records(q) #Create a DataFrame from a Python dictionary df = pd.DataFrame(list(a_dictionary.items()), columns = ['column1', 'column2'])