Skip to content

Instantly share code, notes, and snippets.

@chamrc
Created March 30, 2018 16:20
Show Gist options
  • Save chamrc/1acb81d174a9b4a2b40abaa71a35cd1d to your computer and use it in GitHub Desktop.
Save chamrc/1acb81d174a9b4a2b40abaa71a35cd1d to your computer and use it in GitHub Desktop.

Revisions

  1. chamrc created this gist Mar 30, 2018.
    119 changes: 119 additions & 0 deletions gistfile1.txt
    Original file line number Diff line number Diff line change
    @@ -0,0 +1,119 @@
    name: "Convolutional Neural Network"
    input: "Images (1000x1x28x28)"
    input_dim: 1000
    input_dim: 3
    input_dim: 28
    input_dim: 28

    layer {
    bottom: "Images (1000x1x28x28)"
    top: "Conv2d (1000x64x28x28)"
    name: "Conv2d (1000x64x28x28)"
    type: "Convolution"
    convolution_param {
    num_output: 64
    kernel_size: 5
    stride: 1
    pad: 2
    }
    }

    layer {
    bottom: "Conv2d (1000x64x28x28)"
    top: "Conv2d (1000x64x28x28)"
    name: "BatchNorm 1"
    type: "BatchNorm"
    batch_norm_param {
    use_global_stats: true
    }
    }

    layer {
    bottom: "Conv2d (1000x64x28x28)"
    top: "Conv2d (1000x64x28x28)"
    name: "ReLU 1"
    type: "ReLU"
    }

    layer {
    bottom: "Conv2d (1000x64x28x28)"
    top: "Conv2d (1000x64x28x28)"
    name: "MaxPool 1 (1000x64x14x14)"
    type: "Pooling"
    pooling_param {
    kernel_size: 3
    stride: 2
    pool: MAX
    }
    }

    layer {
    bottom: "Conv2d (1000x64x28x28)"
    top: "Conv2d (1000x128x14x14)"
    name: "Conv2d (1000x128x14x14)"
    type: "Convolution"
    convolution_param {
    num_output: 128
    kernel_size: 1
    pad: 0
    stride: 1
    bias_term: false
    }
    }

    layer {
    bottom: "Conv2d (1000x128x14x14)"
    top: "Conv2d (1000x128x14x14)"
    name: "BatchNorm 2"
    type: "BatchNorm"
    batch_norm_param {
    use_global_stats: true
    }
    }

    layer {
    bottom: "Conv2d (1000x128x14x14)"
    top: "Conv2d (1000x128x14x14)"
    name: "ReLU 2"
    type: "ReLU"
    }

    layer {
    bottom: "Conv2d (1000x128x14x14)"
    top: "Conv2d (1000x128x14x14)"
    name: "MaxPool 2 (1000x128x7x7)"
    type: "Pooling"
    pooling_param {
    kernel_size: 3
    stride: 2
    pool: MAX
    }
    }


    layer {
    bottom: "Conv2d (1000x128x14x14)"
    top: "Flatten (1000x6272)"
    name: "Flatten (1000x6272)"
    type: "InnerProduct"
    inner_product_param {
    num_output: 6272
    }
    }

    layer {
    bottom: "Flatten (1000x6272)"
    top: "Linear (1000x10)"
    name: "Linear (1000x10)"
    type: "InnerProduct"
    inner_product_param {
    num_output: 10
    }
    }

    layer {
    bottom: "Linear (1000x10)"
    top: "Softmax"
    name: "Softmax"
    type: "Softmax"
    }