import torch from transformers import AutoModelForCausalLM # Load models llama3_base = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B") llama3_inst = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct") llama31_base = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B") # Calculate Δθ = θpost - θbase delta_params = {} for name, param in llama3_base.named_parameters(): delta_params[name] = llama3_inst.get_parameter(name) - param # Create Param∆ model: θParam∆ = θ'base + Δθ param_delta_model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.1-8B") for name, param in param_delta_model.named_parameters(): if name in delta_params: param.data += delta_params[name] # Save the resulting model param_delta_model.save_pretrained("llama31-with-llama3-inst-capabilities")