""" This notebook will demontrate a pre-trained model to recognition plate number in an image. Make sure to follow the [installation instructions](https://github.com/imamdigmi/plate-number-recognition#setup) before you start. """ import numpy as np import os import six.moves.urllib as urllib import sys import tarfile import tensorflow as tf import zipfile from collections import defaultdict from io import StringIO from matplotlib import pyplot as plt from PIL import Image import cv2 as cv2 if tf.__version__ < '1.4.0': raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!') FILE_OUTPUT = '.avi' # Checks and deletes the output file # You cant have a existing file or it will through an error if os.path.isfile(FILE_OUTPUT): os.remove(FILE_OUTPUT) # Playing video from file cap = cv2.VideoCapture('>') # Default resolutions of the frame are obtained.The default resolutions are system dependent. # We convert the resolutions from float to integer. frame_width = int(cap.get(3)) frame_height = int(cap.get(4)) # Define the codec and create VideoWriter object.The output is stored in 'output.avi' file. out = cv2.VideoWriter(FILE_OUTPUT, cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), 10, (frame_width, frame_height)) sys.path.append("..") # Object detection imports # Here are the imports from the object detection module. from utils import label_map_util from utils import visualization_utils as vis_util # Model preparation MODEL_NAME = '' PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb' PATH_TO_LABELS = os.path.join('data', '.pbtxt') NUM_CLASSES = 2 # Load a (frozen) Tensorflow model into memory. detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') # Loading label map label_map = label_map_util.load_labelmap(PATH_TO_LABELS) categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True) category_index = label_map_util.create_category_index(categories) with detection_graph.as_default(): with tf.Session(graph=detection_graph) as sess: # Definite input and output Tensors for detection_graph image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # Each box represents a part of the image where a particular object was detected. detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represent how level of confidence for each of the objects. # Score is shown on the result image, together with the class label. detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0') while(cap.isOpened()): # Capture frame-by-frame ret, frame = cap.read() # Expand dimensions since the model expects images to have shape: [1, None, None, 3] image_np_expanded = np.expand_dims(frame, axis=0) # Actual detection. (boxes, scores, classes, num) = sess.run( [detection_boxes, detection_scores, detection_classes, num_detections], feed_dict={image_tensor: image_np_expanded}) # Visualization of the results of a detection. vis_util.visualize_boxes_and_labels_on_image_array( frame, np.squeeze(boxes), np.squeeze(classes).astype(np.int32), np.squeeze(scores), category_index, use_normalized_coordinates=True, line_thickness=8) if ret == True: # Saves for video out.write(frame) # Display the resulting frame cv2.imshow('Charving Detection', frame) # Close window when "Q" button pressed if cv2.waitKey(1) & 0xFF == ord('q'): break else: break # When everything done, release the video capture and video write objects cap.release() out.release() # Closes all the frames cv2.destroyAllWindows()