import numpy import sympy from mpl_toolkits.mplot3d import Axes3D import matplotlib from matplotlib import cm, colors from matplotlib import pyplot as plt branching_number = 2 Nr = 16 Ntheta = 32 # compute the theta,R domain theta = numpy.linspace(0,2*numpy.pi*branching_number, Ntheta) r = numpy.linspace(0,1,Nr) Theta, R = numpy.meshgrid(theta,r) z = R*numpy.exp(1j*Theta) # compute w^2 = z. THE KEY IDEA is to pass the exponentiation by 1/2 into exp(). w = numpy.sqrt(R)*numpy.exp(1j*Theta/2) # color by argument arguments = numpy.angle(w) norm = colors.Normalize(arguments.min(), arguments.max()) color = cm.jet(norm(arguments)) fig = plt.figure(figsize=(16,8)) # plot the real part ax_real = fig.add_subplot(1,2,1,projection='3d') ax_real.plot_surface(z.real, z.imag, w.real, rstride=1, cstride=1, alpha=0.5, facecolors=color) # plot the imaginary part ax_imag = fig.add_subplot(1,2,2,projection='3d') ax_imag.plot_surface(z.real, z.imag, w.imag, rstride=1, cstride=1, alpha=0.5, facecolors=color)