import numpy as np import torch from torch import nn import onnx_tensorrt.backend as backend import onnx class Model(nn.Module): def forward(self, x): y = (2 * x)[0:1] return y model = Model().eval() dummy_input = torch.randn(4, 4, 4) with torch.no_grad(): torch.onnx.export(model, dummy_input, 'test.onnx', verbose=True) model = onnx.load('test.onnx') engine = backend.prepare(model, device='CUDA:0')