Skip to content

Instantly share code, notes, and snippets.

@duyet
Last active February 25, 2020 17:12
Show Gist options
  • Save duyet/30b94f3b02b64b6dd4abc071d6665a86 to your computer and use it in GitHub Desktop.
Save duyet/30b94f3b02b64b6dd4abc071d6665a86 to your computer and use it in GitHub Desktop.
import logging as logger
from datetime import datetime
import boto3
import pandas as pd
from airflow.models import DAG, Variable
from airflow.operators.dummy_operator import DummyOperator
from airflow.operators.python_operator import PythonOperator
from utils import update_context
DAG_OWNER = '[email protected]'
DAG_ID = 'dag_name'
SCHEDULE_INTERVAL = '@weekly'
default_args = {
'owner': DAG_OWNER,
'start_date': datetime(2020, 1, 1),
'executor_config': {
'KubernetesExecutor': {
'request_memory': '512Mi',
'limit_memory': '1Gi',
'request_cpu': '500m',
'limit_cpu': '1000m'
}
},
'retries': 3,
}
def python_task_callable(**kwargs):
pass
def create_dag():
dag = DAG(DAG_ID, default_args=default_args,
schedule_interval=SCHEDULE_INTERVAL)
start = DummyOperator(task_id='start', dag=dag)
python_task = PythonOperator(task_id='python_task',
provide_context=True,
python_callable=python_task_callable,
dag=dag)
complete = DummyOperator(task_id='complete', dag=dag)
start >> python_task >> complete
return dag
globals()[DAG_ID] = create_dag()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment