import os import sys import argparse import numpy as np from PIL import Image import torch import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms from src.models.modnet import MODNet def remove_background(image, matte): # obtain predicted foreground image = np.asarray(image) if len(image.shape) == 2: image = image[:, :, None] if image.shape[2] == 1: image = np.repeat(image, 3, axis=2) elif image.shape[2] == 4: image = image[:, :, 0:3] matte = np.repeat(np.asarray(matte)[:, :, None], 3, axis=2) / 255 foreground = image * matte + np.full(image.shape, 255) * (1 - matte) return Image.fromarray(np.uint8(foreground)) if __name__ == '__main__': # define cmd arguments parser = argparse.ArgumentParser() parser.add_argument('--input-path', type=str, help='path of input images') parser.add_argument('--output-path', type=str, help='path of output images') parser.add_argument('--ckpt-path', type=str, help='path of pre-trained MODNet') args = parser.parse_args() # check input arguments if not os.path.exists(args.input_path): print('Cannot find input path: {0}'.format(args.input_path)) exit() if not os.path.exists(args.output_path): print('Cannot find output path: {0}'.format(args.output_path)) exit() if not os.path.exists(args.ckpt_path): print('Cannot find ckpt path: {0}'.format(args.ckpt_path)) exit() # define hyper-parameters ref_size = 512 # define image to tensor transform im_transform = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ] ) # create MODNet and load the pre-trained ckpt modnet = MODNet(backbone_pretrained=False) modnet = nn.DataParallel(modnet) if torch.cuda.is_available(): modnet = modnet.cuda() weights = torch.load(args.ckpt_path) else: weights = torch.load(args.ckpt_path, map_location=torch.device('cpu')) modnet.load_state_dict(weights) modnet.eval() # inference images im_names = os.listdir(args.input_path) for im_name in im_names: print('Process image: {0}'.format(im_name)) # read image im = Image.open(os.path.join(args.input_path, im_name)) # unify image channels to 3 im = np.asarray(im) if len(im.shape) == 2: im = im[:, :, None] if im.shape[2] == 1: im = np.repeat(im, 3, axis=2) elif im.shape[2] == 4: im = im[:, :, 0:3] # convert image to PyTorch tensor im = Image.fromarray(im) im = im_transform(im) # add mini-batch dim im = im[None, :, :, :] # resize image for input im_b, im_c, im_h, im_w = im.shape if max(im_h, im_w) < ref_size or min(im_h, im_w) > ref_size: if im_w >= im_h: im_rh = ref_size im_rw = int(im_w / im_h * ref_size) elif im_w < im_h: im_rw = ref_size im_rh = int(im_h / im_w * ref_size) else: im_rh = im_h im_rw = im_w im_rw = im_rw - im_rw % 32 im_rh = im_rh - im_rh % 32 im = F.interpolate(im, size=(im_rh, im_rw), mode='area') # inference _, _, matte = modnet(im.cuda() if torch.cuda.is_available() else im, True) # resize and save matte matte = F.interpolate(matte, size=(im_h, im_w), mode='area') matte = matte[0][0].data.cpu().numpy() matte_name = im_name.split('.')[0] + '.png' foreground_name = im_name.split('.')[0] + '.foreground.png' Image.fromarray(((matte * 255).astype('uint8')), mode='L').save(os.path.join(args.output_path, matte_name)) foreground = remove_background(Image.open(os.path.join(args.input_path, im_name)), Image.open(os.path.join(args.output_path, matte_name))) foreground.save(os.path.join(args.output_path, foreground_name))