Currently three main styles:
- Autocomplete
- e.g. github copilot, windsurf
- Inline "ghost text" as you type
- Sometimes amazingly good; often pretty useless
- Need to train yourself to ignore spurious suggestions
Convert <ingredients> to JSON using the following format:
If an ingredient has both weight and volume, extract only the weight:
¾ cup (150g) dark brown sugar
[{"name": "dark brown sugar", "quantity": 150, "unit": "g"}]
If an ingredient only lists a volume, extract that.
| library(tidyverse) | |
| # https://twitter.com/buddyherms/status/1576966150680121344 -------------- | |
| # PROs: at, by, and regexp examples | |
| # CONs: quite simple | |
| vt_census <- tidycensus::get_decennial( | |
| geography = "block", | |
| state = "VT", |
| f1 <- function(n) { | |
| x <- numeric() | |
| for (i in 1:n) { | |
| x <- c(x, i) | |
| } | |
| x | |
| } | |
| f1.5 <- function(n) { | |
| x <- numeric() |
| data(diamonds, package = "ggplot2") | |
| # Most straightforward | |
| diamonds$ppc <- diamonds$price / diamonds$carat | |
| # Avoid repeating diamonds | |
| diamonds$ppc <- with(diamonds, price / carat) | |
| # The inspiration for dplyr's mutate | |
| diamonds <- transform(diamonds, ppc = price / carat) |
| library(rtweet) | |
| library(tidyverse) | |
| auth_setup_default() | |
| json <- search_tweets("#rstats", n = 5000, include_rts = FALSE, parse = FALSE)[1:5] | |
| tweets <- tibble(json = json) %>% | |
| unnest_wider(json) %>% | |
| select(statuses) %>% | |
| unnest_longer(statuses) %>% |
library(tidyverse)
simple_data <- tibble(
group = factor(rep(c("A", "B"), each = 15)),
subject = 1:30,
score = c(rnorm(15, 40, 20), rnorm(15, 60, 10))
)
simple_data_se <- simple_data %>% | library(ggplot2) | |
| x <- c("بقرة", "دجاج", "حصان") | |
| df <- data.frame(x = x, y = 1:3) | |
| labels_rtl <- function(x) paste0("\u202B", x) | |
| ggplot(df, aes(x, y)) + | |
| geom_point() + | |
| scale_x_discrete(labels = labels_rtl) + |
| # need + validate ----------------------------------------------------------- | |
| validate( | |
| need( | |
| mzfinder::check_mzr_object(ms_object$mzr_connection), | |
| "Wasn't able to connect to MS file" | |
| ) | |
| ) | |
| validate( | |
| need(!is.null(input$ppm_input), "ppm_input must not be null"), | |
| need(input$ppm_input > 0L, "ppm_input must be > 0") |
| # Code for quick exploration of | |
| # https://github.com/rfordatascience/tidytuesday/tree/master/data/2020/2020-05-26 | |
| # Video at https://youtu.be/kHFmtKCI_F4 | |
| library(tidyverse) | |
| cocktails <- readr::read_csv("boston_cocktails.csv") | |
| # Are name and row_id equivalent? ----------------------------------------- |