#The MIT License (MIT) # #Copyright (c) 2015 Andre Queiroz # #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: # #The above copyright notice and this permission notice shall be included in #all copies or substantial portions of the Software. # #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN #THE SOFTWARE. # # Holt-Winters algorithms to forecasting # Coded in Python 2 by: Andre Queiroz # Description: This module contains three exponential smoothing algorithms. They are Holt's linear trend method and Holt-Winters seasonal methods (additive and multiplicative). # References: # Hyndman, R. J.; Athanasopoulos, G. (2013) Forecasting: principles and practice. http://otexts.com/fpp/. Accessed on 07/03/2013. # Byrd, R. H.; Lu, P.; Nocedal, J. A Limited Memory Algorithm for Bound Constrained Optimization, (1995), SIAM Journal on Scientific and Statistical Computing, 16, 5, pp. 1190-1208. from __future__ import division from sys import exit from math import sqrt from numpy import array from scipy.optimize import fmin_l_bfgs_b def RMSE(params, *args): Y = args[0] type = args[1] rmse = 0 if type == 'linear': alpha, beta = params a = [Y[0]] b = [Y[1] - Y[0]] y = [a[0] + b[0]] for i in range(len(Y)): a.append(alpha * Y[i] + (1 - alpha) * (a[i] + b[i])) b.append(beta * (a[i + 1] - a[i]) + (1 - beta) * b[i]) y.append(a[i + 1] + b[i + 1]) else: alpha, beta, gamma = params m = args[2] a = [sum(Y[0:m]) / float(m)] b = [(sum(Y[m:2 * m]) - sum(Y[0:m])) / m ** 2] if type == 'additive': s = [Y[i] - a[0] for i in range(m)] y = [a[0] + b[0] + s[0]] for i in range(len(Y)): a.append(alpha * (Y[i] - s[i]) + (1 - alpha) * (a[i] + b[i])) b.append(beta * (a[i + 1] - a[i]) + (1 - beta) * b[i]) s.append(gamma * (Y[i] - a[i] - b[i]) + (1 - gamma) * s[i]) y.append(a[i + 1] + b[i + 1] + s[i + 1]) elif type == 'multiplicative': s = [Y[i] / a[0] for i in range(m)] y = [(a[0] + b[0]) * s[0]] for i in range(len(Y)): a.append(alpha * (Y[i] / s[i]) + (1 - alpha) * (a[i] + b[i])) b.append(beta * (a[i + 1] - a[i]) + (1 - beta) * b[i]) s.append(gamma * (Y[i] / (a[i] + b[i])) + (1 - gamma) * s[i]) y.append((a[i + 1] + b[i + 1]) * s[i + 1]) else: exit('Type must be either linear, additive or multiplicative') rmse = sqrt(sum([(m - n) ** 2 for m, n in zip(Y, y[:-1])]) / len(Y)) return rmse def linear(x, fc, alpha = None, beta = None): Y = x[:] if (alpha == None or beta == None): initial_values = array([0.3, 0.1]) boundaries = [(0, 1), (0, 1)] type = 'linear' parameters = fmin_l_bfgs_b(RMSE, x0 = initial_values, args = (Y, type), bounds = boundaries, approx_grad = True) alpha, beta = parameters[0] a = [Y[0]] b = [Y[1] - Y[0]] y = [a[0] + b[0]] rmse = 0 for i in range(len(Y) + fc): if i == len(Y): Y.append(a[-1] + b[-1]) a.append(alpha * Y[i] + (1 - alpha) * (a[i] + b[i])) b.append(beta * (a[i + 1] - a[i]) + (1 - beta) * b[i]) y.append(a[i + 1] + b[i + 1]) rmse = sqrt(sum([(m - n) ** 2 for m, n in zip(Y[:-fc], y[:-fc - 1])]) / len(Y[:-fc])) return Y[-fc:], alpha, beta, rmse def additive(x, m, fc, alpha = None, beta = None, gamma = None): Y = x[:] if (alpha == None or beta == None or gamma == None): initial_values = array([0.3, 0.1, 0.1]) boundaries = [(0, 1), (0, 1), (0, 1)] type = 'additive' parameters = fmin_l_bfgs_b(RMSE, x0 = initial_values, args = (Y, type, m), bounds = boundaries, approx_grad = True) alpha, beta, gamma = parameters[0] a = [sum(Y[0:m]) / float(m)] b = [(sum(Y[m:2 * m]) - sum(Y[0:m])) / m ** 2] s = [Y[i] - a[0] for i in range(m)] y = [a[0] + b[0] + s[0]] rmse = 0 for i in range(len(Y) + fc): if i == len(Y): Y.append(a[-1] + b[-1] + s[-m]) a.append(alpha * (Y[i] - s[i]) + (1 - alpha) * (a[i] + b[i])) b.append(beta * (a[i + 1] - a[i]) + (1 - beta) * b[i]) s.append(gamma * (Y[i] - a[i] - b[i]) + (1 - gamma) * s[i]) y.append(a[i + 1] + b[i + 1] + s[i + 1]) rmse = sqrt(sum([(m - n) ** 2 for m, n in zip(Y[:-fc], y[:-fc - 1])]) / len(Y[:-fc])) return Y[-fc:], alpha, beta, gamma, rmse def multiplicative(x, m, fc, alpha = None, beta = None, gamma = None): Y = x[:] if (alpha == None or beta == None or gamma == None): initial_values = array([0.0, 1.0, 0.0]) boundaries = [(0, 1), (0, 1), (0, 1)] type = 'multiplicative' parameters = fmin_l_bfgs_b(RMSE, x0 = initial_values, args = (Y, type, m), bounds = boundaries, approx_grad = True) alpha, beta, gamma = parameters[0] a = [sum(Y[0:m]) / float(m)] b = [(sum(Y[m:2 * m]) - sum(Y[0:m])) / m ** 2] s = [Y[i] / a[0] for i in range(m)] y = [(a[0] + b[0]) * s[0]] rmse = 0 for i in range(len(Y) + fc): if i == len(Y): Y.append((a[-1] + b[-1]) * s[-m]) a.append(alpha * (Y[i] / s[i]) + (1 - alpha) * (a[i] + b[i])) b.append(beta * (a[i + 1] - a[i]) + (1 - beta) * b[i]) s.append(gamma * (Y[i] / (a[i] + b[i])) + (1 - gamma) * s[i]) y.append((a[i + 1] + b[i + 1]) * s[i + 1]) rmse = sqrt(sum([(m - n) ** 2 for m, n in zip(Y[:-fc], y[:-fc - 1])]) / len(Y[:-fc])) return Y[-fc:], alpha, beta, gamma, rmse