import tensorflow as tf # The export path contains the name and the version of the model tf.keras.backend.set_learning_phase(0) # Ignore dropout at inference model = tf.keras.models.load_model('./inception.h5') export_path = '../my_image_classifier/1' # Fetch the Keras session and save the model # The signature definition is defined by the input and output tensors # And stored with the default serving key with tf.keras.backend.get_session() as sess: tf.saved_model.simple_save( sess, export_path, inputs={'input_image': model.input}, outputs={t.name: t for t in model.outputs})