""" bilateral_approximation.py Fast Bilateral Filter Approximation Using a Signal Processing Approach in Python Copyright (c) 2014 Jack Doerner Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy import math import scipy.signal, scipy.interpolate def bilateral_approximation(data, edge, sigmaS, sigmaR, samplingS=None, samplingR=None, edgeMin=None, edgeMax=None): # This function implements Durand and Dorsey's Signal Processing Bilateral Filter Approximation (2006) # It is derived from Jiawen Chen's matlab implementation # The original papers and matlab code are available at http://people.csail.mit.edu/sparis/bf/ inputHeight = data.shape[0] inputWidth = data.shape[1] samplingS = sigmaS if (samplingS is None) else samplingS samplingR = sigmaR if (samplingR is None) else samplingR edgeMax = numpy.amax(edge) if (edgeMax is None) else edgeMax edgeMin = numpy.amin(edge) if (edgeMin is None) else edgeMin edgeDelta = edgeMax - edgeMin derivedSigmaS = sigmaS / samplingS; derivedSigmaR = sigmaR / samplingR; paddingXY = math.floor( 2 * derivedSigmaS ) + 1 paddingZ = math.floor( 2 * derivedSigmaR ) + 1 # allocate 3D grid downsampledWidth = math.floor( ( inputWidth - 1 ) / samplingS ) + 1 + 2 * paddingXY downsampledHeight = math.floor( ( inputHeight - 1 ) / samplingS ) + 1 + 2 * paddingXY downsampledDepth = math.floor( edgeDelta / samplingR ) + 1 + 2 * paddingZ gridData = numpy.zeros( (downsampledHeight, downsampledWidth, downsampledDepth) ) gridWeights = numpy.zeros( (downsampledHeight, downsampledWidth, downsampledDepth) ) # compute downsampled indices (jj, ii) = numpy.meshgrid( range(inputWidth), range(inputHeight) ) di = numpy.around( ii / samplingS ) + paddingXY dj = numpy.around( jj / samplingS ) + paddingXY dz = numpy.around( ( edge - edgeMin ) / samplingR ) + paddingZ # perform scatter (there's probably a faster way than this) # normally would do downsampledWeights( di, dj, dk ) = 1, but we have to # perform a summation to do box downsampling for k in range(dz.size): dataZ = data.flat[k] if (not math.isnan( dataZ )): dik = di.flat[k] djk = dj.flat[k] dzk = dz.flat[k] gridData[ dik, djk, dzk ] += dataZ gridWeights[ dik, djk, dzk ] += 1 # make gaussian kernel kernelWidth = 2 * derivedSigmaS + 1 kernelHeight = kernelWidth kernelDepth = 2 * derivedSigmaR + 1 halfKernelWidth = math.floor( kernelWidth / 2 ) halfKernelHeight = math.floor( kernelHeight / 2 ) halfKernelDepth = math.floor( kernelDepth / 2 ) (gridX, gridY, gridZ) = numpy.meshgrid( range( int(kernelWidth) ), range( int(kernelHeight) ), range( int(kernelDepth) ) ) gridX -= halfKernelWidth gridY -= halfKernelHeight gridZ -= halfKernelDepth gridRSquared = (( gridX * gridX + gridY * gridY ) / ( derivedSigmaS * derivedSigmaS )) + (( gridZ * gridZ ) / ( derivedSigmaR * derivedSigmaR )) kernel = numpy.exp( -0.5 * gridRSquared ) # convolve blurredGridData = scipy.signal.fftconvolve( gridData, kernel, mode='same' ) blurredGridWeights = scipy.signal.fftconvolve( gridWeights, kernel, mode='same' ) # divide blurredGridWeights = numpy.where( blurredGridWeights == 0 , -2, blurredGridWeights) # avoid divide by 0, won't read there anyway normalizedBlurredGrid = blurredGridData / blurredGridWeights; normalizedBlurredGrid = numpy.where( blurredGridWeights < -1, 0, normalizedBlurredGrid ) # put 0s where it's undefined # upsample ( jj, ii ) = numpy.meshgrid( range( inputWidth ), range( inputHeight ) ) # no rounding di = ( ii / samplingS ) + paddingXY dj = ( jj / samplingS ) + paddingXY dz = ( edge - edgeMin ) / samplingR + paddingZ return scipy.interpolate.interpn( (range(normalizedBlurredGrid.shape[0]),range(normalizedBlurredGrid.shape[1]),range(normalizedBlurredGrid.shape[2])), normalizedBlurredGrid, (di, dj, dz) )