Skip to content

Instantly share code, notes, and snippets.

@jbdatascience
Forked from skuttruf/frac-diff_sk
Created March 2, 2019 14:02
Show Gist options
  • Save jbdatascience/05400f58ea7c5a5d5b66dbe38c9633dd to your computer and use it in GitHub Desktop.
Save jbdatascience/05400f58ea7c5a5d5b66dbe38c9633dd to your computer and use it in GitHub Desktop.
Python code for fractional differencing of pandas time series
"""
Python code for fractional differencing of pandas time series
illustrating the concepts of the article "Preserving Memory in Stationary Time Series"
by Simon Kuttruf
While this code is dedicated to the public domain for use without permission, the author disclaims any liability in connection with the use of this code.
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
def getWeights(d,lags):
# return the weights from the series expansion of the differencing operator
# for real orders d and up to lags coefficients
w=[1]
for k in range(1,lags):
w.append(-w[-1]*((d-k+1))/k)
w=np.array(w).reshape(-1,1)
return w
def plotWeights(dRange, lags, numberPlots):
weights=pd.DataFrame(np.zeros((lags, numberPlots)))
interval=np.linspace(dRange[0],dRange[1],numberPlots)
for i, diff_order in enumerate(interval):
weights[i]=getWeights(diff_order,lags)
weights.columns = [round(x,2) for x in interval]
fig=weights.plot()
plt.legend(title='Order of differencing')
plt.title('Lag coefficients for various orders of differencing')
plt.xlabel('lag coefficients')
#plt.grid(False)
plt.show()
plotWeights([0,1],7,6)
def ts_differencing(series, order, lag_cutoff):
# return the time series resulting from (fractional) differencing
# for real orders order up to lag_cutoff coefficients
weights=getWeights(order, lag_cutoff)
res=0
for k in range(lag_cutoff):
res += weights[k]*series.shift(k).fillna(0)
return res[lag_cutoff:]
def plotMemoryVsCorr(result, seriesName):
fig, ax = plt.subplots()
ax2 = ax.twinx()
color1='xkcd:deep red'; color2='xkcd:cornflower blue'
ax.plot(result.order,result['adf'],color=color1)
ax.plot(result.order, result['5%'], color='xkcd:slate')
ax2.plot(result.order,result['corr'], color=color2)
ax.set_xlabel('order of differencing')
ax.set_ylabel('adf', color=color1);ax.tick_params(axis='y', labelcolor=color1)
ax2.set_ylabel('corr', color=color2); ax2.tick_params(axis='y', labelcolor=color2)
plt.title('ADF test statistics and correlation for %s' % (seriesName))
plt.show()
from statsmodels.tsa.stattools import adfuller
def MemoryVsCorr(series, dRange, numberPlots, lag_cutoff, seriesName):
# return a data frame and plot comparing adf statistics and linear correlation
# for numberPlots orders of differencing in the interval dRange up to a lag_cutoff coefficients
interval=np.linspace(dRange[0], dRange[1],numberPlots)
result=pd.DataFrame(np.zeros((len(interval),4)))
result.columns = ['order','adf','corr', '5%']
result['order']=interval
for counter,order in enumerate(interval):
seq_traf=seq_transform(series,order,lag_cutoff)
res=adfuller(seq_traf, maxlag=1, regression='c') #autolag='AIC'
result.loc[counter,'adf']=res[0]
result.loc[counter,'5%']=res[4]['5%']
result.loc[counter,'corr']= np.corrcoef(series[lag_cutoff:].fillna(0),seq_traf)[0,1]
plotMemoryVsCorr(result, seriesName)
return result
@maheshtaank
Copy link

Hello,
have you been able to employ last 2 functions?

@masonmahaffey
Copy link

@jbdatascience or @maheshtaank did you develop any function to inverse the difference?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment