""" Python code for fractional differencing of pandas time series illustrating the concepts of the article "Preserving Memory in Stationary Time Series" by Simon Kuttruf While this code is dedicated to the public domain for use without permission, the author disclaims any liability in connection with the use of this code. """ import numpy as np import pandas as pd import matplotlib.pyplot as plt def getWeights(d,lags): # return the weights from the series expansion of the differencing operator # for real orders d and up to lags coefficients w=[1] for k in range(1,lags): w.append(-w[-1]*((d-k+1))/k) w=np.array(w).reshape(-1,1) return w def plotWeights(dRange, lags, numberPlots): weights=pd.DataFrame(np.zeros((lags, numberPlots))) interval=np.linspace(dRange[0],dRange[1],numberPlots) for i, diff_order in enumerate(interval): weights[i]=getWeights(diff_order,lags) weights.columns = [round(x,2) for x in interval] fig=weights.plot() plt.legend(title='Order of differencing') plt.title('Lag coefficients for various orders of differencing') plt.xlabel('lag coefficients') #plt.grid(False) plt.show() plotWeights([0,1],7,6) def ts_differencing(series, order, lag_cutoff): # return the time series resulting from (fractional) differencing # for real orders order up to lag_cutoff coefficients weights=getWeights(order, lag_cutoff) res=0 for k in range(lag_cutoff): res += weights[k]*series.shift(k).fillna(0) return res[lag_cutoff:] def plotMemoryVsCorr(result, seriesName): fig, ax = plt.subplots() ax2 = ax.twinx() color1='xkcd:deep red'; color2='xkcd:cornflower blue' ax.plot(result.order,result['adf'],color=color1) ax.plot(result.order, result['5%'], color='xkcd:slate') ax2.plot(result.order,result['corr'], color=color2) ax.set_xlabel('order of differencing') ax.set_ylabel('adf', color=color1);ax.tick_params(axis='y', labelcolor=color1) ax2.set_ylabel('corr', color=color2); ax2.tick_params(axis='y', labelcolor=color2) plt.title('ADF test statistics and correlation for %s' % (seriesName)) plt.show() from statsmodels.tsa.stattools import adfuller def MemoryVsCorr(series, dRange, numberPlots, lag_cutoff, seriesName): # return a data frame and plot comparing adf statistics and linear correlation # for numberPlots orders of differencing in the interval dRange up to a lag_cutoff coefficients interval=np.linspace(dRange[0], dRange[1],numberPlots) result=pd.DataFrame(np.zeros((len(interval),4))) result.columns = ['order','adf','corr', '5%'] result['order']=interval for counter,order in enumerate(interval): seq_traf=ts_differencing(series,order,lag_cutoff) res=adfuller(seq_traf, maxlag=1, regression='c') #autolag='AIC' result.loc[counter,'adf']=res[0] result.loc[counter,'5%']=res[4]['5%'] result.loc[counter,'corr']= np.corrcoef(series[lag_cutoff:].fillna(0),seq_traf)[0,1] plotMemoryVsCorr(result, seriesName) return result