Last active
June 28, 2025 12:30
-
-
Save koosaga/d4afc4434dbaa348d5bef0d60ac36aa4 to your computer and use it in GitHub Desktop.
Revisions
-
koosaga revised this gist
May 17, 2019 . 1 changed file with 15 additions and 4 deletions.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -1,3 +1,14 @@ const int mod = 998244353; using lint = long long; lint ipow(lint x, lint p){ lint ret = 1, piv = x; while(p){ if(p & 1) ret = ret * piv % mod; piv = piv * piv % mod; p >>= 1; } return ret; } vector<int> berlekamp_massey(vector<int> x){ vector<int> ls, cur; int lf, ld; @@ -69,8 +80,8 @@ int guess_nth_term(vector<int> x, lint n){ return get_nth(v, x, n); } struct elem{int x, y, v;}; // A_(x, y) <- v, 0-based. no duplicate please.. vector<int> get_min_poly(int n, vector<elem> M){ // smallest poly P such that A^i = sum_{j < i} {A^j \times P_j} vector<int> rnd1, rnd2; mt19937 rng(0x14004); auto randint = [&rng](int lb, int ub){ @@ -99,7 +110,7 @@ vector<int> get_min_poly(int n, vector<elem> M){ reverse(sol.begin(), sol.end()); return sol; } lint det(int n, vector<elem> M){ vector<int> rnd; mt19937 rng(0x14004); auto randint = [&rng](int lb, int ub){ @@ -113,4 +124,4 @@ lint det(int n, vector<elem> M){ if(n % 2 == 0) sol = mod - sol; for(auto &i : rnd) sol = 1ll * sol * ipow(i, mod - 2) % mod; return sol; } -
koosaga created this gist
May 17, 2019 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,116 @@ vector<int> berlekamp_massey(vector<int> x){ vector<int> ls, cur; int lf, ld; for(int i=0; i<x.size(); i++){ lint t = 0; for(int j=0; j<cur.size(); j++){ t = (t + 1ll * x[i-j-1] * cur[j]) % mod; } if((t - x[i]) % mod == 0) continue; if(cur.empty()){ cur.resize(i+1); lf = i; ld = (t - x[i]) % mod; continue; } lint k = -(x[i] - t) * ipow(ld, mod - 2) % mod; vector<int> c(i-lf-1); c.push_back(k); for(auto &j : ls) c.push_back(-j * k % mod); if(c.size() < cur.size()) c.resize(cur.size()); for(int j=0; j<cur.size(); j++){ c[j] = (c[j] + cur[j]) % mod; } if(i-lf+(int)ls.size()>=(int)cur.size()){ tie(ls, lf, ld) = make_tuple(cur, i, (t - x[i]) % mod); } cur = c; } for(auto &i : cur) i = (i % mod + mod) % mod; return cur; } int get_nth(vector<int> rec, vector<int> dp, lint n){ int m = rec.size(); vector<int> s(m), t(m); s[0] = 1; if(m != 1) t[1] = 1; else t[0] = rec[0]; auto mul = [&rec](vector<int> v, vector<int> w){ int m = v.size(); vector<int> t(2 * m); for(int j=0; j<m; j++){ for(int k=0; k<m; k++){ t[j+k] += 1ll * v[j] * w[k] % mod; if(t[j+k] >= mod) t[j+k] -= mod; } } for(int j=2*m-1; j>=m; j--){ for(int k=1; k<=m; k++){ t[j-k] += 1ll * t[j] * rec[k-1] % mod; if(t[j-k] >= mod) t[j-k] -= mod; } } t.resize(m); return t; }; while(n){ if(n & 1) s = mul(s, t); t = mul(t, t); n >>= 1; } lint ret = 0; for(int i=0; i<m; i++) ret += 1ll * s[i] * dp[i] % mod; return ret % mod; } int guess_nth_term(vector<int> x, lint n){ if(n < x.size()) return x[n]; vector<int> v = berlekamp_massey(x); if(v.empty()) return 0; return get_nth(v, x, n); } struct elem{int x, y, v;}; // A_(x, y) <- v, 0-based. no duplicate please.. vector<int> get_min_poly(int n, vector<elem> M){ // smallest poly P such that A^i = sum_{j < i} {A^j \times P_j} vector<int> rnd1, rnd2; mt19937 rng(0x14004); auto randint = [&rng](int lb, int ub){ return uniform_int_distribution<int>(lb, ub)(rng); }; for(int i=0; i<n; i++){ rnd1.push_back(randint(1, mod - 1)); rnd2.push_back(randint(1, mod - 1)); } vector<int> gobs; for(int i=0; i<2*n+2; i++){ int tmp = 0; for(int j=0; j<n; j++){ tmp += 1ll * rnd2[j] * rnd1[j] % mod; if(tmp >= mod) tmp -= mod; } gobs.push_back(tmp); vector<int> nxt(n); for(auto &i : M){ nxt[i.x] += 1ll * i.v * rnd1[i.y] % mod; if(nxt[i.x] >= mod) nxt[i.x] -= mod; } rnd1 = nxt; } auto sol = berlekamp_massey(gobs); reverse(sol.begin(), sol.end()); return sol; } lint det(int n, vector<elem> M){ vector<int> rnd; mt19937 rng(0x14004); auto randint = [&rng](int lb, int ub){ return uniform_int_distribution<int>(lb, ub)(rng); }; for(int i=0; i<n; i++) rnd.push_back(randint(1, mod - 1)); for(auto &i : M){ i.v = 1ll * i.v * rnd[i.y] % mod; } auto sol = get_min_poly(n, M)[0]; if(n % 2 == 0) sol = mod - sol; for(auto &i : rnd) sol = 1ll * sol * ipow(i, mod - 2) % mod; return sol; }