Skip to content

Instantly share code, notes, and snippets.

@lppier
Created December 27, 2020 06:46
Show Gist options
  • Save lppier/0f10d3a9d13c76c24f65a77b3d02b76a to your computer and use it in GitHub Desktop.
Save lppier/0f10d3a9d13c76c24f65a77b3d02b76a to your computer and use it in GitHub Desktop.

Revisions

  1. lppier created this gist Dec 27, 2020.
    114 changes: 114 additions & 0 deletions HF_CustomSentimentClassifier.py
    Original file line number Diff line number Diff line change
    @@ -0,0 +1,114 @@
    from pathlib import Path
    from sklearn.model_selection import train_test_split
    from transformers import DistilBertTokenizerFast
    import torch
    from transformers import DistilBertForSequenceClassification, Trainer, TrainingArguments
    import torch.nn.functional as F
    from sklearn.metrics import accuracy_score, precision_recall_fscore_support

    # IMDB Dataset can be found here
    # wget http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz
    # tar -xf aclImdb_v1.tar.gz


    def compute_metrics(pred):
    labels = pred.label_ids
    preds = pred.predictions.argmax(-1)
    precision, recall, f1, _ = precision_recall_fscore_support(
    labels, preds, average="binary"
    )
    acc = accuracy_score(labels, preds)
    return {"accuracy": acc, "f1": f1, "precision": precision, "recall": recall}


    def read_imdb_split(split_dir):
    split_dir = Path(split_dir)
    texts = []
    labels = []
    for label_dir in ["pos", "neg"]:
    for text_file in (split_dir / label_dir).iterdir():
    texts.append(text_file.read_text(encoding="utf8"))
    labels.append(0 if label_dir is "neg" else 1)

    return texts, labels


    train_texts, train_labels = read_imdb_split("data/aclImdb/train")
    test_texts, test_labels = read_imdb_split("data/aclImdb/test")

    # Further split training set to get a validation set
    train_texts, val_texts, train_labels, val_labels = train_test_split(
    train_texts, train_labels, test_size=0.1
    )

    # Get BERT Tokens
    tokenizer = DistilBertTokenizerFast.from_pretrained("distilbert-base-uncased")
    train_encodings = tokenizer(train_texts, truncation=True, padding=True)
    val_encodings = tokenizer(val_texts, truncation=True, padding=True)
    test_encodings = tokenizer(test_texts, truncation=True, padding=True)


    class IMDbDataset(torch.utils.data.Dataset):
    def __init__(self, encodings, labels):
    self.encodings = encodings
    self.labels = labels

    def __getitem__(self, idx):
    item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
    item["labels"] = torch.tensor(self.labels[idx])
    return item

    def __len__(self):
    return len(self.labels)


    train_dataset = IMDbDataset(train_encodings, train_labels)
    val_dataset = IMDbDataset(val_encodings, val_labels)
    test_dataset = IMDbDataset(test_encodings, test_labels)

    training_args = TrainingArguments(
    output_dir="./results", # output directory
    num_train_epochs=1, # total number of training epochs
    per_device_train_batch_size=16, # batch size per device during training
    per_device_eval_batch_size=64, # batch size for evaluation
    warmup_steps=500, # number of warmup steps for learning rate scheduler
    weight_decay=0.01, # strength of weight decay
    logging_dir="./logs", # directory for storing logs
    logging_steps=10,
    )

    model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased")

    trainer = Trainer(
    model=model, # the instantiated 🤗 Transformers model to be trained
    args=training_args, # training arguments, defined above
    train_dataset=train_dataset, # training dataset
    eval_dataset=val_dataset, # evaluation dataset
    compute_metrics=compute_metrics,
    )

    trainer.train() # this saves the models in the checkpoints under results folder

    # Inference Code

    import pandas as pd
    model = DistilBertForSequenceClassification.from_pretrained("./results_old/checkpoint-3500")
    df_labels = pd.read_csv("data/comprehendimdbtest.csv", header=None)
    test_data = df_labels.iloc[:,1].to_list()

    predictions = []
    # Need this loop otherwise my cpu memory just loads up
    for text in test_data:
    encoding = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
    outputs = model(**encoding)
    pt_predictions = F.softmax(outputs[0], dim=-1)
    predictions.append(pt_predictions.argmax(-1).item()) # warning, don't append the tensor too memory intensive!
    print(pt_predictions)


    precision, recall, f1, _ = precision_recall_fscore_support(
    df_labels.iloc[:, 0], predictions, average="binary"
    )
    acc = accuracy_score(df_labels.iloc[:, 0], predictions)
    metrics = {"accuracy": acc, "f1": f1, "precision": precision, "recall": recall}
    print(metrics)