repressilator = @reaction_network begin hillr(P₃,α,K,n), ∅ --> m₁ hillr(P₁,α,K,n), ∅ --> m₂ hillr(P₂,α,K,n), ∅ --> m₃ (δ,γ), m₁ ↔ ∅ (δ,γ), m₂ ↔ ∅ (δ,γ), m₃ ↔ ∅ β, m₁ --> m₁ + P₁ β, m₂ --> m₂ + P₂ β, m₃ --> m₃ + P₃ μ, P₁ --> ∅ μ, P₂ --> ∅ μ, P₃ --> ∅ end α K n δ γ β μ; latexify(repressilator) g = Graph(repressilator) odesys = convert(ODESystem, repressilator) latexify(odesys) speciesmap(repressilator) paramsmap(repressilator) species(repressilator) params(repressilator) # parameters [α,K,n,δ,γ,β,μ] p = (.5, 40, 2, log(2)/120, 5e-3, 20*log(2)/120, log(2)/60) # initial condition [m₁,m₂,m₃,P₁,P₂,P₃] u₀ = [0.,0.,0.,20.,0.,0.] # time interval to solve on tspan = (0., 10000.) # create the ODEProblem we want to solve oprob = ODEProblem(repressilator, u₀, tspan, p) sol = solve(oprob, Tsit5(), saveat=10.) plot(sol)