#ifndef __QUATERNION_INCLUDED__ #define __QUATERNION_INCLUDED__ #define QUATERNION_IDENTITY float4(0, 0, 0, 1) #ifndef PI #define PI 3.14159265359f #endif // Quaternion multiplication // http://mathworld.wolfram.com/Quaternion.html float4 qmul(float4 q1, float4 q2) { return float4( q2.xyz * q1.w + q1.xyz * q2.w + cross(q1.xyz, q2.xyz), q1.w * q2.w - dot(q1.xyz, q2.xyz) ); } // Vector rotation with a quaternion // http://mathworld.wolfram.com/Quaternion.html float3 rotate_vector(float3 v, float4 r) { float4 r_c = r * float4(-1, -1, -1, 1); return qmul(r, qmul(float4(v, 0), r_c)).xyz; } // A given angle of rotation about a given axis float4 rotate_angle_axis(float angle, float3 axis) { float sn = sin(angle * 0.5); float cs = cos(angle * 0.5); return float4(axis * sn, cs); } // https://stackoverflow.com/questions/1171849/finding-quaternion-representing-the-rotation-from-one-vector-to-another float4 from_to_rotation(float3 v1, float3 v2) { float4 q; float d = dot(v1, v2); if (d < -0.999999) { float3 right = float3(1, 0, 0); float3 up = float3(0, 1, 0); float3 tmp = cross(right, v1); if (length(tmp) < 0.000001) { tmp = cross(up, v1); } tmp = normalize(tmp); q = rotate_angle_axis(PI, tmp); } else if (d > 0.999999) { q = QUATERNION_IDENTITY; } else { q.xyz = cross(v1, v2); q.w = 1 + d; q = normalize(q); } return q; } float4 q_conj(float4 q) { return float4(-q.x, -q.y, -q.z, q.w); } // https://jp.mathworks.com/help/aeroblks/quaternioninverse.html float4 q_inverse(float4 q) { float4 conj = q_conj(q); return conj / (q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w); } float4 q_diff(float4 q1, float4 q2) { return q2 * q_inverse(q1); } float4 q_look_at(float3 forward, float3 up) { float3 right = normalize(cross(forward, up)); up = normalize(cross(forward, right)); float m00 = right.x; float m01 = right.y; float m02 = right.z; float m10 = up.x; float m11 = up.y; float m12 = up.z; float m20 = forward.x; float m21 = forward.y; float m22 = forward.z; float num8 = (m00 + m11) + m22; float4 q = QUATERNION_IDENTITY; if (num8 > 0.0) { float num = sqrt(num8 + 1.0); q.w = num * 0.5; num = 0.5 / num; q.x = (m12 - m21) * num; q.y = (m20 - m02) * num; q.z = (m01 - m10) * num; return q; } if ((m00 >= m11) && (m00 >= m22)) { float num7 = sqrt(((1.0 + m00) - m11) - m22); float num4 = 0.5 / num7; q.x = 0.5 * num7; q.y = (m01 + m10) * num4; q.z = (m02 + m20) * num4; q.w = (m12 - m21) * num4; return q; } if (m11 > m22) { float num6 = sqrt(((1.0 + m11) - m00) - m22); float num3 = 0.5 / num6; q.x = (m10 + m01) * num3; q.y = 0.5 * num6; q.z = (m21 + m12) * num3; q.w = (m20 - m02) * num3; return q; } float num5 = sqrt(((1.0 + m22) - m00) - m11); float num2 = 0.5 / num5; q.x = (m20 + m02) * num2; q.y = (m21 + m12) * num2; q.z = 0.5 * num5; q.w = (m01 - m10) * num2; return q; } float4 q_slerp(in float4 a, in float4 b, float t) { // if either input is zero, return the other. if (length(a) == 0.0) { if (length(b) == 0.0) { return QUATERNION_IDENTITY; } return b; } else if (length(b) == 0.0) { return a; } float cosHalfAngle = a.w * b.w + dot(a.xyz, b.xyz); if (cosHalfAngle >= 1.0 || cosHalfAngle <= -1.0) { return a; } else if (cosHalfAngle < 0.0) { b.xyz = -b.xyz; b.w = -b.w; cosHalfAngle = -cosHalfAngle; } float blendA; float blendB; if (cosHalfAngle < 0.99) { // do proper slerp for big angles float halfAngle = acos(cosHalfAngle); float sinHalfAngle = sin(halfAngle); float oneOverSinHalfAngle = 1.0 / sinHalfAngle; blendA = sin(halfAngle * (1.0 - t)) * oneOverSinHalfAngle; blendB = sin(halfAngle * t) * oneOverSinHalfAngle; } else { // do lerp if angle is really small. blendA = 1.0 - t; blendB = t; } float4 result = float4(blendA * a.xyz + blendB * b.xyz, blendA * a.w + blendB * b.w); if (length(result) > 0.0) { return normalize(result); } return QUATERNION_IDENTITY; } float4x4 quaternion_to_matrix(float4 quat) { float4x4 m = float4x4(float4(0, 0, 0, 0), float4(0, 0, 0, 0), float4(0, 0, 0, 0), float4(0, 0, 0, 0)); float x = quat.x, y = quat.y, z = quat.z, w = quat.w; float x2 = x + x, y2 = y + y, z2 = z + z; float xx = x * x2, xy = x * y2, xz = x * z2; float yy = y * y2, yz = y * z2, zz = z * z2; float wx = w * x2, wy = w * y2, wz = w * z2; m[0][0] = 1.0 - (yy + zz); m[0][1] = xy - wz; m[0][2] = xz + wy; m[1][0] = xy + wz; m[1][1] = 1.0 - (xx + zz); m[1][2] = yz - wx; m[2][0] = xz - wy; m[2][1] = yz + wx; m[2][2] = 1.0 - (xx + yy); m[3][3] = 1.0; return m; } #endif // __QUATERNION_INCLUDED__