=== ITERATION 0 === The next suffix of 'abcdefabxybcdmnabcdex' to add is '{a}' at indices 0,0 => ActiveNode: node #0 => ActiveEdge: none => DistanceIntoActiveEdge: 0 => UnresolvedSuffixes: 0 Existing edge for node #0 starting with 'a' not found Adding new edge to node #0 => node #0 --> a(0,#) (0)──a === ITERATION 1 === The next suffix of 'abcdefabxybcdmnabcdex' to add is '{b}' at indices 1,1 => ActiveNode: node #0 => ActiveEdge: none => DistanceIntoActiveEdge: 0 => UnresolvedSuffixes: 0 Existing edge for node #0 starting with 'b' not found Adding new edge to node #0 => node #0 --> b(1,#) (0)┬─ab └─b === ITERATION 2 === The next suffix of 'abcdefabxybcdmnabcdex' to add is '{c}' at indices 2,2 => ActiveNode: node #0 => ActiveEdge: none => DistanceIntoActiveEdge: 0 => UnresolvedSuffixes: 0 Existing edge for node #0 starting with 'c' not found Adding new edge to node #0 => node #0 --> c(2,#) (0)┬─abc ├─bc └─c === ITERATION 3 === The next suffix of 'abcdefabxybcdmnabcdex' to add is '{d}' at indices 3,3 => ActiveNode: node #0 => ActiveEdge: none => DistanceIntoActiveEdge: 0 => UnresolvedSuffixes: 0 Existing edge for node #0 starting with 'd' not found Adding new edge to node #0 => node #0 --> d(3,#) (0)┬─abcd ├─bcd ├─cd └─d === ITERATION 4 === The next suffix of 'abcdefabxybcdmnabcdex' to add is '{e}' at indices 4,4 => ActiveNode: node #0 => ActiveEdge: none => DistanceIntoActiveEdge: 0 => UnresolvedSuffixes: 0 Existing edge for node #0 starting with 'e' not found Adding new edge to node #0 => node #0 --> e(4,#) (0)┬─abcde ├─bcde ├─cde ├─de └─e === ITERATION 5 === The next suffix of 'abcdefabxybcdmnabcdex' to add is '{f}' at indices 5,5 => ActiveNode: node #0 => ActiveEdge: none => DistanceIntoActiveEdge: 0 => UnresolvedSuffixes: 0 Existing edge for node #0 starting with 'f' not found Adding new edge to node #0 => node #0 --> f(5,#) (0)┬─abcdef ├─bcdef ├─cdef ├─def ├─ef └─f === ITERATION 6 === The next suffix of 'abcdefabxybcdmnabcdex' to add is '{a}' at indices 6,6 => ActiveNode: node #0 => ActiveEdge: none => DistanceIntoActiveEdge: 0 => UnresolvedSuffixes: 0 Existing edge for node #0 starting with 'a' found. Values adjusted to: => ActiveEdge is now: abcdefa(0,#) => DistanceIntoActiveEdge is now: 1 => UnresolvedSuffixes is now: 0 (0)┬─abcdefa ├─bcdefa ├─cdefa ├─defa ├─efa └─fa === ITERATION 7 === The next suffix of 'abcdefabxybcdmnabcdex' to add is 'a{b}' at indices 6,7 => ActiveNode: node #0 => ActiveEdge: abcdefab(0,#) => DistanceIntoActiveEdge: 1 => UnresolvedSuffixes: 1 The next character on the current edge is 'b' (suffix added implicitly) => DistanceIntoActiveEdge is now: 2 (0)┬─abcdefab ├─bcdefab ├─cdefab ├─defab ├─efab └─fab === ITERATION 8 === The next suffix of 'abcdefabxybcdmnabcdex' to add is 'ab{x}' at indices 6,8 => ActiveNode: node #0 => ActiveEdge: abcdefabx(0,#) => DistanceIntoActiveEdge: 2 => UnresolvedSuffixes: 2 Splitting edge abcdefabx(0,#) at index 2 ('c') => Hierarchy is now: node #0 --> ab(0,1) --> node #1 --> cdefabx(2,#) => ActiveEdge is now: ab(0,1) Adding new edge to node #1 => node #1 --> x(8,#) (0)┬─ab───────(1)┬─cdefabx │ └─x ├─bcdefabx ├─cdefabx ├─defabx ├─efabx └─fabx The next suffix of 'abcdefabxybcdmnabcdex' to add is 'b{x}' at indices 7,8 => ActiveNode: node #0 => ActiveEdge: bcdefabx(1,#) => DistanceIntoActiveEdge: 1 => UnresolvedSuffixes: 1 Splitting edge bcdefabx(1,#) at index 2 ('c') => Hierarchy is now: node #0 --> b(1,1) --> node #2 --> cdefabx(2,#) => ActiveEdge is now: b(1,1) => Connected node #1 to node #2 Adding new edge to node #2 => node #2 --> x(8,#) (0)┬─ab──────(1)┬─cdefabx │ └─x ├─b───────(2)┬─cdefabx │ └─x ├─cdefabx ├─defabx ├─efabx └─fabx The next suffix of 'abcdefabxybcdmnabcdex' to add is '{x}' at indices 8,8 => ActiveNode: node #0 => ActiveEdge: none => DistanceIntoActiveEdge: 0 => UnresolvedSuffixes: 0 Existing edge for node #0 starting with 'x' not found Adding new edge to node #0 => node #0 --> x(8,#) (0)┬─ab──────(1)┬─cdefabx │ └─x ├─b───────(2)┬─cdefabx │ └─x ├─cdefabx ├─defabx ├─efabx ├─fabx └─x === ITERATION 9 === The next suffix of 'abcdefabxybcdmnabcdex' to add is '{y}' at indices 9,9 => ActiveNode: node #0 => ActiveEdge: none => DistanceIntoActiveEdge: 0 => UnresolvedSuffixes: 0 Existing edge for node #0 starting with 'y' not found Adding new edge to node #0 => node #0 --> y(9,#) (0)┬─ab───────(1)┬─cdefabxy │ └─xy ├─b────────(2)┬─cdefabxy │ └─xy ├─cdefabxy ├─defabxy ├─efabxy ├─fabxy ├─xy └─y === ITERATION 10 === The next suffix of 'abcdefabxybcdmnabcdex' to add is '{b}' at indices 10,10 => ActiveNode: node #0 => ActiveEdge: none => DistanceIntoActiveEdge: 0 => UnresolvedSuffixes: 0 Existing edge for node #0 starting with 'b' found. Values adjusted to: Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary => ActiveEdge is now: => DistanceIntoActiveEdge is now: 0 => UnresolvedSuffixes is now: 0 (0)┬─ab────────(1)┬─cdefabxyb │ └─xyb ├─b─────────(2)┬─cdefabxyb │ └─xyb ├─cdefabxyb ├─defabxyb ├─efabxyb ├─fabxyb ├─xyb └─yb === ITERATION 11 === The next suffix of 'abcdefabxybcdmnabcdex' to add is 'b{c}' at indices 10,11 => ActiveNode: node #2 => ActiveEdge: none => DistanceIntoActiveEdge: 0 => UnresolvedSuffixes: 1 Existing edge for node #2 starting with 'c' found. Values adjusted to: => ActiveEdge is now: cdefabxybc(2,#) => DistanceIntoActiveEdge is now: 1 => UnresolvedSuffixes is now: 1 (0)┬─ab─────────(1)┬─cdefabxybc │ └─xybc ├─b──────────(2)┬─cdefabxybc │ └─xybc ├─cdefabxybc ├─defabxybc ├─efabxybc ├─fabxybc ├─xybc └─ybc === ITERATION 12 === The next suffix of 'abcdefabxybcdmnabcdex' to add is 'bc{d}' at indices 10,12 => ActiveNode: node #2 => ActiveEdge: cdefabxybcd(2,#) => DistanceIntoActiveEdge: 1 => UnresolvedSuffixes: 2 The next character on the current edge is 'd' (suffix added implicitly) => DistanceIntoActiveEdge is now: 2 (0)┬─ab──────────(1)┬─cdefabxybcd │ └─xybcd ├─b───────────(2)┬─cdefabxybcd │ └─xybcd ├─cdefabxybcd ├─defabxybcd ├─efabxybcd ├─fabxybcd ├─xybcd └─ybcd === ITERATION 13 === The next suffix of 'abcdefabxybcdmnabcdex' to add is 'bcd{m}' at indices 10,13 => ActiveNode: node #2 => ActiveEdge: cdefabxybcdm(2,#) => DistanceIntoActiveEdge: 2 => UnresolvedSuffixes: 3 Splitting edge cdefabxybcdm(2,#) at index 4 ('e') => Hierarchy is now: node #2 --> cd(2,3) --> node #3 --> efabxybcdm(4,#) => ActiveEdge is now: cd(2,3) Adding new edge to node #3 => node #3 --> m(13,#) The linked node for active node node #2 is [null] (0)┬─ab───────────(1)┬─cdefabxybcdm │ └─xybcdm ├─b────────────(2)┬─cd─────(3)┬─efabxybcdm │ │ └─m │ └─xybcdm ├─cdefabxybcdm ├─defabxybcdm ├─efabxybcdm ├─fabxybcdm ├─xybcdm └─ybcdm The next suffix of 'abcdefabxybcdmnabcdex' to add is 'cd{m}' at indices 11,13 => ActiveNode: node #0 => ActiveEdge: cdefabxybcdm(2,#) => DistanceIntoActiveEdge: 2 => UnresolvedSuffixes: 2 Splitting edge cdefabxybcdm(2,#) at index 4 ('e') => Hierarchy is now: node #0 --> cd(2,3) --> node #4 --> efabxybcdm(4,#) => ActiveEdge is now: cd(2,3) => Connected node #3 to node #4 Adding new edge to node #4 => node #4 --> m(13,#) (0)┬─ab──────────(1)┬─cdefabxybcdm │ └─xybcdm ├─b───────────(2)┬─cd─────(3)┬─efabxybcdm │ │ └─m │ └─xybcdm ├─cd──────────(4)┬─efabxybcdm │ └─m ├─defabxybcdm ├─efabxybcdm ├─fabxybcdm ├─xybcdm └─ybcdm The next suffix of 'abcdefabxybcdmnabcdex' to add is 'd{m}' at indices 12,13 => ActiveNode: node #0 => ActiveEdge: defabxybcdm(3,#) => DistanceIntoActiveEdge: 1 => UnresolvedSuffixes: 1 Splitting edge defabxybcdm(3,#) at index 4 ('e') => Hierarchy is now: node #0 --> d(3,3) --> node #5 --> efabxybcdm(4,#) => ActiveEdge is now: d(3,3) => Connected node #4 to node #5 Adding new edge to node #5 => node #5 --> m(13,#) (0)┬─ab─────────(1)┬─cdefabxybcdm │ └─xybcdm ├─b──────────(2)┬─cd─────(3)┬─efabxybcdm │ │ └─m │ └─xybcdm ├─cd─────────(4)┬─efabxybcdm │ └─m ├─d──────────(5)┬─efabxybcdm │ └─m ├─efabxybcdm ├─fabxybcdm ├─xybcdm └─ybcdm The next suffix of 'abcdefabxybcdmnabcdex' to add is '{m}' at indices 13,13 => ActiveNode: node #0 => ActiveEdge: none => DistanceIntoActiveEdge: 0 => UnresolvedSuffixes: 0 Existing edge for node #0 starting with 'm' not found Adding new edge to node #0 => node #0 --> m(13,#) (0)┬─ab─────────(1)┬─cdefabxybcdm │ └─xybcdm ├─b──────────(2)┬─cd─────(3)┬─efabxybcdm │ │ └─m │ └─xybcdm ├─cd─────────(4)┬─efabxybcdm │ └─m ├─d──────────(5)┬─efabxybcdm │ └─m ├─efabxybcdm ├─fabxybcdm ├─m ├─xybcdm └─ybcdm === ITERATION 14 === The next suffix of 'abcdefabxybcdmnabcdex' to add is '{n}' at indices 14,14 => ActiveNode: node #0 => ActiveEdge: none => DistanceIntoActiveEdge: 0 => UnresolvedSuffixes: 0 Existing edge for node #0 starting with 'n' not found Adding new edge to node #0 => node #0 --> n(14,#) (0)┬─ab──────────(1)┬─cdefabxybcdmn │ └─xybcdmn ├─b───────────(2)┬─cd──────(3)┬─efabxybcdmn │ │ └─mn │ └─xybcdmn ├─cd──────────(4)┬─efabxybcdmn │ └─mn ├─d───────────(5)┬─efabxybcdmn │ └─mn ├─efabxybcdmn ├─fabxybcdmn ├─mn ├─n ├─xybcdmn └─ybcdmn === ITERATION 15 === The next suffix of 'abcdefabxybcdmnabcdex' to add is '{a}' at indices 15,15 => ActiveNode: node #0 => ActiveEdge: none => DistanceIntoActiveEdge: 0 => UnresolvedSuffixes: 0 Existing edge for node #0 starting with 'a' found. Values adjusted to: => ActiveEdge is now: ab(0,1) => DistanceIntoActiveEdge is now: 1 => UnresolvedSuffixes is now: 0 (0)┬─ab───────────(1)┬─cdefabxybcdmna │ └─xybcdmna ├─b────────────(2)┬─cd───────(3)┬─efabxybcdmna │ │ └─mna │ └─xybcdmna ├─cd───────────(4)┬─efabxybcdmna │ └─mna ├─d────────────(5)┬─efabxybcdmna │ └─mna ├─efabxybcdmna ├─fabxybcdmna ├─mna ├─na ├─xybcdmna └─ybcdmna === ITERATION 16 === The next suffix of 'abcdefabxybcdmnabcdex' to add is 'a{b}' at indices 15,16 => ActiveNode: node #0 => ActiveEdge: ab(0,1) => DistanceIntoActiveEdge: 1 => UnresolvedSuffixes: 1 The next character on the current edge is 'b' (suffix added implicitly) => DistanceIntoActiveEdge is now: 2 Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary (0)┬─ab────────────(1)┬─cdefabxybcdmnab │ └─xybcdmnab ├─b─────────────(2)┬─cd────────(3)┬─efabxybcdmnab │ │ └─mnab │ └─xybcdmnab ├─cd────────────(4)┬─efabxybcdmnab │ └─mnab ├─d─────────────(5)┬─efabxybcdmnab │ └─mnab ├─efabxybcdmnab ├─fabxybcdmnab ├─mnab ├─nab ├─xybcdmnab └─ybcdmnab === ITERATION 17 === The next suffix of 'abcdefabxybcdmnabcdex' to add is 'ab{c}' at indices 15,17 => ActiveNode: node #1 => ActiveEdge: none => DistanceIntoActiveEdge: 0 => UnresolvedSuffixes: 2 Existing edge for node #1 starting with 'c' found. Values adjusted to: => ActiveEdge is now: cdefabxybcdmnabc(2,#) => DistanceIntoActiveEdge is now: 1 => UnresolvedSuffixes is now: 2 (0)┬─ab─────────────(1)┬─cdefabxybcdmnabc │ └─xybcdmnabc ├─b──────────────(2)┬─cd─────────(3)┬─efabxybcdmnabc │ │ └─mnabc │ └─xybcdmnabc ├─cd─────────────(4)┬─efabxybcdmnabc │ └─mnabc ├─d──────────────(5)┬─efabxybcdmnabc │ └─mnabc ├─efabxybcdmnabc ├─fabxybcdmnabc ├─mnabc ├─nabc ├─xybcdmnabc └─ybcdmnabc === ITERATION 18 === The next suffix of 'abcdefabxybcdmnabcdex' to add is 'abc{d}' at indices 15,18 => ActiveNode: node #1 => ActiveEdge: cdefabxybcdmnabcd(2,#) => DistanceIntoActiveEdge: 1 => UnresolvedSuffixes: 3 The next character on the current edge is 'd' (suffix added implicitly) => DistanceIntoActiveEdge is now: 2 (0)┬─ab──────────────(1)┬─cdefabxybcdmnabcd │ └─xybcdmnabcd ├─b───────────────(2)┬─cd──────────(3)┬─efabxybcdmnabcd │ │ └─mnabcd │ └─xybcdmnabcd ├─cd──────────────(4)┬─efabxybcdmnabcd │ └─mnabcd ├─d───────────────(5)┬─efabxybcdmnabcd │ └─mnabcd ├─efabxybcdmnabcd ├─fabxybcdmnabcd ├─mnabcd ├─nabcd ├─xybcdmnabcd └─ybcdmnabcd === ITERATION 19 === The next suffix of 'abcdefabxybcdmnabcdex' to add is 'abcd{e}' at indices 15,19 => ActiveNode: node #1 => ActiveEdge: cdefabxybcdmnabcde(2,#) => DistanceIntoActiveEdge: 2 => UnresolvedSuffixes: 4 The next character on the current edge is 'e' (suffix added implicitly) => DistanceIntoActiveEdge is now: 3 (0)┬─ab───────────────(1)┬─cdefabxybcdmnabcde │ └─xybcdmnabcde ├─b────────────────(2)┬─cd───────────(3)┬─efabxybcdmnabcde │ │ └─mnabcde │ └─xybcdmnabcde ├─cd───────────────(4)┬─efabxybcdmnabcde │ └─mnabcde ├─d────────────────(5)┬─efabxybcdmnabcde │ └─mnabcde ├─efabxybcdmnabcde ├─fabxybcdmnabcde ├─mnabcde ├─nabcde ├─xybcdmnabcde └─ybcdmnabcde === ITERATION 20 === The next suffix of 'abcdefabxybcdmnabcdex' to add is 'abcde{x}' at indices 15,20 => ActiveNode: node #1 => ActiveEdge: cdefabxybcdmnabcdex(2,#) => DistanceIntoActiveEdge: 3 => UnresolvedSuffixes: 5 Splitting edge cdefabxybcdmnabcdex(2,#) at index 5 ('f') => Hierarchy is now: node #1 --> cde(2,4) --> node #6 --> fabxybcdmnabcdex(5,#) => ActiveEdge is now: cde(2,4) Adding new edge to node #6 => node #6 --> x(20,#) The linked node for active node node #1 is node #2 => ActiveNode is now: node #2 Active point is now at or beyond edge boundary and will be moved until it falls inside an edge boundary (0)┬─ab────────────────(1)┬─cde───────────(6)┬─fabxybcdmnabcdex │ │ └─x │ └─xybcdmnabcdex ├─b─────────────────(2)┬─cd────────────(3)┬─efabxybcdmnabcdex │ │ └─mnabcdex │ └─xybcdmnabcdex ├─cd────────────────(4)┬─efabxybcdmnabcdex │ └─mnabcdex ├─d─────────────────(5)┬─efabxybcdmnabcdex │ └─mnabcdex ├─efabxybcdmnabcdex ├─fabxybcdmnabcdex ├─mnabcdex ├─nabcdex ├─xybcdmnabcdex └─ybcdmnabcdex The next suffix of 'abcdefabxybcdmnabcdex' to add is 'bcde{x}' at indices 16,20 => ActiveNode: node #3 => ActiveEdge: efabxybcdmnabcdex(4,#) => DistanceIntoActiveEdge: 1 => UnresolvedSuffixes: 4 Splitting edge efabxybcdmnabcdex(4,#) at index 5 ('f') => Hierarchy is now: node #3 --> e(4,4) --> node #7 --> fabxybcdmnabcdex(5,#) => ActiveEdge is now: e(4,4) => Connected node #6 to node #7 Adding new edge to node #7 => node #7 --> x(20,#) The linked node for active node node #3 is node #4 => ActiveNode is now: node #4 (0)┬─ab────────────────(1)┬─cde───────────(6)┬─fabxybcdmnabcdex │ │ └─x │ └─xybcdmnabcdex ├─b─────────────────(2)┬─cd────────────(3)┬─e────────(7)┬─fabxybcdmnabcdex │ │ │ └─x │ │ └─mnabcdex │ └─xybcdmnabcdex ├─cd────────────────(4)┬─efabxybcdmnabcdex │ └─mnabcdex ├─d─────────────────(5)┬─efabxybcdmnabcdex │ └─mnabcdex ├─efabxybcdmnabcdex ├─fabxybcdmnabcdex ├─mnabcdex ├─nabcdex ├─xybcdmnabcdex └─ybcdmnabcdex The next suffix of 'abcdefabxybcdmnabcdex' to add is 'cde{x}' at indices 17,20 => ActiveNode: node #4 => ActiveEdge: efabxybcdmnabcdex(4,#) => DistanceIntoActiveEdge: 1 => UnresolvedSuffixes: 3 Splitting edge efabxybcdmnabcdex(4,#) at index 5 ('f') => Hierarchy is now: node #4 --> e(4,4) --> node #8 --> fabxybcdmnabcdex(5,#) => ActiveEdge is now: e(4,4) => Connected node #7 to node #8 Adding new edge to node #8 => node #8 --> x(20,#) The linked node for active node node #4 is node #5 => ActiveNode is now: node #5 (0)┬─ab────────────────(1)┬─cde───────────(6)┬─fabxybcdmnabcdex │ │ └─x │ └─xybcdmnabcdex ├─b─────────────────(2)┬─cd────────────(3)┬─e────────(7)┬─fabxybcdmnabcdex │ │ │ └─x │ │ └─mnabcdex │ └─xybcdmnabcdex ├─cd────────────────(4)┬─e────────(8)┬─fabxybcdmnabcdex │ │ └─x │ └─mnabcdex ├─d─────────────────(5)┬─efabxybcdmnabcdex │ └─mnabcdex ├─efabxybcdmnabcdex ├─fabxybcdmnabcdex ├─mnabcdex ├─nabcdex ├─xybcdmnabcdex └─ybcdmnabcdex The next suffix of 'abcdefabxybcdmnabcdex' to add is 'de{x}' at indices 18,20 => ActiveNode: node #5 => ActiveEdge: efabxybcdmnabcdex(4,#) => DistanceIntoActiveEdge: 1 => UnresolvedSuffixes: 2 Splitting edge efabxybcdmnabcdex(4,#) at index 5 ('f') => Hierarchy is now: node #5 --> e(4,4) --> node #9 --> fabxybcdmnabcdex(5,#) => ActiveEdge is now: e(4,4) => Connected node #8 to node #9 Adding new edge to node #9 => node #9 --> x(20,#) The linked node for active node node #5 is [null] (00)┬─ab────────────────(01)┬─cde───────────(06)┬─fabxybcdmnabcdex │ │ └─x │ └─xybcdmnabcdex ├─b─────────────────(02)┬─cd────────────(03)┬─e────────(07)┬─fabxybcdmnabcdex │ │ │ └─x │ │ └─mnabcdex │ └─xybcdmnabcdex ├─cd────────────────(04)┬─e────────(08)┬─fabxybcdmnabcdex │ │ └─x │ └─mnabcdex ├─d─────────────────(05)┬─e────────(09)┬─fabxybcdmnabcdex │ │ └─x │ └─mnabcdex ├─efabxybcdmnabcdex ├─fabxybcdmnabcdex ├─mnabcdex ├─nabcdex ├─xybcdmnabcdex └─ybcdmnabcdex The next suffix of 'abcdefabxybcdmnabcdex' to add is 'e{x}' at indices 19,20 => ActiveNode: node #0 => ActiveEdge: efabxybcdmnabcdex(4,#) => DistanceIntoActiveEdge: 1 => UnresolvedSuffixes: 1 Splitting edge efabxybcdmnabcdex(4,#) at index 5 ('f') => Hierarchy is now: node #0 --> e(4,4) --> node #10 --> fabxybcdmnabcdex(5,#) => ActiveEdge is now: e(4,4) => Connected node #9 to node #10 Adding new edge to node #10 => node #10 --> x(20,#) (00)┬─ab───────────────(01)┬─cde───────────(06)┬─fabxybcdmnabcdex │ │ └─x │ └─xybcdmnabcdex ├─b────────────────(02)┬─cd────────────(03)┬─e────────(07)┬─fabxybcdmnabcdex │ │ │ └─x │ │ └─mnabcdex │ └─xybcdmnabcdex ├─cd───────────────(04)┬─e────────(08)┬─fabxybcdmnabcdex │ │ └─x │ └─mnabcdex ├─d────────────────(05)┬─e────────(09)┬─fabxybcdmnabcdex │ │ └─x │ └─mnabcdex ├─e────────────────(10)┬─fabxybcdmnabcdex │ └─x ├─fabxybcdmnabcdex ├─mnabcdex ├─nabcdex ├─xybcdmnabcdex └─ybcdmnabcdex The next suffix of 'abcdefabxybcdmnabcdex' to add is '{x}' at indices 20,20 => ActiveNode: node #0 => ActiveEdge: none => DistanceIntoActiveEdge: 0 => UnresolvedSuffixes: 0 Existing edge for node #0 starting with 'x' found. Values adjusted to: => ActiveEdge is now: xybcdmnabcdex(8,#) => DistanceIntoActiveEdge is now: 1 => UnresolvedSuffixes is now: 0 (00)┬─ab───────────────(01)┬─cde───────────(06)┬─fabxybcdmnabcdex │ │ └─x │ └─xybcdmnabcdex ├─b────────────────(02)┬─cd────────────(03)┬─e────────(07)┬─fabxybcdmnabcdex │ │ │ └─x │ │ └─mnabcdex │ └─xybcdmnabcdex ├─cd───────────────(04)┬─e────────(08)┬─fabxybcdmnabcdex │ │ └─x │ └─mnabcdex ├─d────────────────(05)┬─e────────(09)┬─fabxybcdmnabcdex │ │ └─x │ └─mnabcdex ├─e────────────────(10)┬─fabxybcdmnabcdex │ └─x ├─fabxybcdmnabcdex ├─mnabcdex ├─nabcdex ├─xybcdmnabcdex └─ybcdmnabcdex