float taylorInvSqrt(in float r) { return 1.79284291400159 - 0.85373472095314 * r; } vec2 taylorInvSqrt(in vec2 r) { return 1.79284291400159 - 0.85373472095314 * r; } vec3 taylorInvSqrt(in vec3 r) { return 1.79284291400159 - 0.85373472095314 * r; } vec4 taylorInvSqrt(in vec4 r) { return 1.79284291400159 - 0.85373472095314 * r; } float permute(const in float x) { return mod289(((x * 34.0) + 1.0) * x); } vec2 permute(const in vec2 x) { return mod289(((x * 34.0) + 1.0) * x); } vec3 permute(const in vec3 x) { return mod289(((x * 34.0) + 1.0) * x); } vec4 permute(const in vec4 x) { return mod289(((x * 34.0) + 1.0) * x); } float mod289(const in float x) { return x - floor(x * (1. / 289.)) * 289.; } vec2 mod289(const in vec2 x) { return x - floor(x * (1. / 289.)) * 289.; } vec3 mod289(const in vec3 x) { return x - floor(x * (1. / 289.)) * 289.; } vec4 mod289(const in vec4 x) { return x - floor(x * (1. / 289.)) * 289.; } float snoise(in vec3 v) { const vec2 C = vec2(1.0/6.0, 1.0/3.0) ; const vec4 D = vec4(0.0, 0.5, 1.0, 2.0); // First corner vec3 i = floor(v + dot(v, C.yyy) ); vec3 x0 = v - i + dot(i, C.xxx) ; // Other corners vec3 g = step(x0.yzx, x0.xyz); vec3 l = 1.0 - g; vec3 i1 = min( g.xyz, l.zxy ); vec3 i2 = max( g.xyz, l.zxy ); // x0 = x0 - 0.0 + 0.0 * C.xxx; // x1 = x0 - i1 + 1.0 * C.xxx; // x2 = x0 - i2 + 2.0 * C.xxx; // x3 = x0 - 1.0 + 3.0 * C.xxx; vec3 x1 = x0 - i1 + C.xxx; vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y // Permutations i = mod289(i); vec4 p = permute( permute( permute( i.z + vec4(0.0, i1.z, i2.z, 1.0 )) + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) + i.x + vec4(0.0, i1.x, i2.x, 1.0 )); // Gradients: 7x7 points over a square, mapped onto an octahedron. // The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294) float n_ = 0.142857142857; // 1.0/7.0 vec3 ns = n_ * D.wyz - D.xzx; vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7) vec4 x_ = floor(j * ns.z); vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N) vec4 x = x_ *ns.x + ns.yyyy; vec4 y = y_ *ns.x + ns.yyyy; vec4 h = 1.0 - abs(x) - abs(y); vec4 b0 = vec4( x.xy, y.xy ); vec4 b1 = vec4( x.zw, y.zw ); //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0; //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0; vec4 s0 = floor(b0)*2.0 + 1.0; vec4 s1 = floor(b1)*2.0 + 1.0; vec4 sh = -step(h, vec4(0.0)); vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ; vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ; vec3 p0 = vec3(a0.xy,h.x); vec3 p1 = vec3(a0.zw,h.y); vec3 p2 = vec3(a1.xy,h.z); vec3 p3 = vec3(a1.zw,h.w); //Normalise gradients vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3))); p0 *= norm.x; p1 *= norm.y; p2 *= norm.z; p3 *= norm.w; // Mix final noise value vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0); m = m * m; return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), dot(p2,x2), dot(p3,x3) ) ); } vec3 snoiseVec3( vec3 x ){ float s = snoise(vec3( x )); float s1 = snoise(vec3( x.y - 19.1 , x.z + 33.4 , x.x + 47.2 )); float s2 = snoise(vec3( x.z + 74.2 , x.x - 124.5 , x.y + 99.4 )); vec3 c = vec3( s , s1 , s2 ); return c; } vec3 curlNoise( vec3 p ){ const float e = .1; vec3 dx = vec3( e , 0.0 , 0.0 ); vec3 dy = vec3( 0.0 , e , 0.0 ); vec3 dz = vec3( 0.0 , 0.0 , e ); vec3 p_x0 = snoiseVec3( p - dx ); vec3 p_x1 = snoiseVec3( p + dx ); vec3 p_y0 = snoiseVec3( p - dy ); vec3 p_y1 = snoiseVec3( p + dy ); vec3 p_z0 = snoiseVec3( p - dz ); vec3 p_z1 = snoiseVec3( p + dz ); float x = p_y1.z - p_y0.z - p_z1.y + p_z0.y; float y = p_z1.x - p_z0.x - p_x1.z + p_x0.z; float z = p_x1.y - p_x0.y - p_y1.x + p_y0.x; const float divisor = 1.0 / ( 2.0 * e ); return normalize( vec3( x , y , z ) * divisor ); }