Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save ndinh215/bdf996e3ace71d1e84e497f159a91f90 to your computer and use it in GitHub Desktop.
Save ndinh215/bdf996e3ace71d1e84e497f159a91f90 to your computer and use it in GitHub Desktop.
Instructions for CUDA v11.3 and cuDNN 8.2 installation on Ubuntu 20.04 for PyTorch 1.11
# first get the PPA repository driver
sudo add-apt-repository ppa:graphics-drivers/ppa
# install nvidai driver
sudo apt install nvidia-384 nvidia-384-dev
# install other import packages
sudo apt-get install g++ freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libglu1-mesa libglu1-mesa-dev
# CUDA 9 requires gcc 6
sudo apt install gcc-6
sudo apt install g++-6
# downoad one of the "runfile (local)" installation packages from cuda toolkit archive
wget https://developer.nvidia.com/compute/cuda/9.0/Prod/local_installers/cuda_9.0.176_384.81_linux-run
# make the download file executable
chmod +x cuda_9.0.176_384.81_linux-run
sudo ./cuda_9.0.176_384.81_linux-run --override
# Answer questions following while installation begin
# You are attempting to install on an unsupported configuration. Do you wish to continue? y
# Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 384.81? n
# Install the CUDA 9.0 Toolkit? y
# set up symlinks for gcc/g++
sudo ln -s /usr/bin/gcc-6 /usr/local/cuda/bin/gcc
sudo ln -s /usr/bin/g++-6 /usr/local/cuda/bin/g++
# setup your paths
echo 'export PATH=/usr/local/cuda-9.0/bin:$PATH' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64:$LD_LIBRARY_PATH' >> ~/.bash.rc
source ~/.bashrc
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment