// Ported from Stefan Gustavson's java implementation // http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf // Read Stefan's excellent paper for details on how this code works. // // Sean McCullough banksean@gmail.com /** * You can pass in a random number generator object if you like. * It is assumed to have a random() method. */ var ClassicalNoise = function(r) { // Classic Perlin noise in 3D, for comparison if (r == undefined) r = Math; this.grad3 = [[1,1,0],[-1,1,0],[1,-1,0],[-1,-1,0], [1,0,1],[-1,0,1],[1,0,-1],[-1,0,-1], [0,1,1],[0,-1,1],[0,1,-1],[0,-1,-1]]; this.p = []; for (var i=0; i<256; i++) { this.p[i] = Math.floor(r.random()*256); } // To remove the need for index wrapping, double the permutation table length this.perm = []; for(var i=0; i<512; i++) { this.perm[i]=this.p[i & 255]; } }; ClassicalNoise.prototype.dot = function(g, x, y, z) { return g[0]*x + g[1]*y + g[2]*z; }; ClassicalNoise.prototype.mix = function(a, b, t) { return (1.0-t)*a + t*b; }; ClassicalNoise.prototype.fade = function(t) { return t*t*t*(t*(t*6.0-15.0)+10.0); }; // Classic Perlin noise, 3D version ClassicalNoise.prototype.noise = function(x, y, z) { // Find unit grid cell containing point var X = Math.floor(x); var Y = Math.floor(y); var Z = Math.floor(z); // Get relative xyz coordinates of point within that cell x = x - X; y = y - Y; z = z - Z; // Wrap the integer cells at 255 (smaller integer period can be introduced here) X = X & 255; Y = Y & 255; Z = Z & 255; // Calculate a set of eight hashed gradient indices var gi000 = this.perm[X+this.perm[Y+this.perm[Z]]] % 12; var gi001 = this.perm[X+this.perm[Y+this.perm[Z+1]]] % 12; var gi010 = this.perm[X+this.perm[Y+1+this.perm[Z]]] % 12; var gi011 = this.perm[X+this.perm[Y+1+this.perm[Z+1]]] % 12; var gi100 = this.perm[X+1+this.perm[Y+this.perm[Z]]] % 12; var gi101 = this.perm[X+1+this.perm[Y+this.perm[Z+1]]] % 12; var gi110 = this.perm[X+1+this.perm[Y+1+this.perm[Z]]] % 12; var gi111 = this.perm[X+1+this.perm[Y+1+this.perm[Z+1]]] % 12; // The gradients of each corner are now: // g000 = grad3[gi000]; // g001 = grad3[gi001]; // g010 = grad3[gi010]; // g011 = grad3[gi011]; // g100 = grad3[gi100]; // g101 = grad3[gi101]; // g110 = grad3[gi110]; // g111 = grad3[gi111]; // Calculate noise contributions from each of the eight corners var n000= this.dot(this.grad3[gi000], x, y, z); var n100= this.dot(this.grad3[gi100], x-1, y, z); var n010= this.dot(this.grad3[gi010], x, y-1, z); var n110= this.dot(this.grad3[gi110], x-1, y-1, z); var n001= this.dot(this.grad3[gi001], x, y, z-1); var n101= this.dot(this.grad3[gi101], x-1, y, z-1); var n011= this.dot(this.grad3[gi011], x, y-1, z-1); var n111= this.dot(this.grad3[gi111], x-1, y-1, z-1); // Compute the fade curve value for each of x, y, z var u = this.fade(x); var v = this.fade(y); var w = this.fade(z); // Interpolate along x the contributions from each of the corners var nx00 = this.mix(n000, n100, u); var nx01 = this.mix(n001, n101, u); var nx10 = this.mix(n010, n110, u); var nx11 = this.mix(n011, n111, u); // Interpolate the four results along y var nxy0 = this.mix(nx00, nx10, v); var nxy1 = this.mix(nx01, nx11, v); // Interpolate the two last results along z var nxyz = this.mix(nxy0, nxy1, w); return nxyz; };