#!/usr/bin/python # -*- coding: utf-8 -*- import os import hashlib import argparse import binascii import struct def encrypt_v1(imei, key): """ The V1 unlock system This system uses hardcoded keys. """ salt = hashlib.md5(key).hexdigest()[8:24] digest = hashlib.md5((imei + salt).lower()).digest() code = 0 for i in range(0, 4): code += (ord(digest[i]) ^ ord(digest[4 + i]) ^ ord(digest[8 + i]) ^ ord(digest[12 + i])) << (3 - i) * 8 return str((code & 0x1ffffff) | 0x2000000) def encrypt_v2_1(imei, version): # Magic bytes from somewhere key_2 = [ 0x01966A9, 0x021058F, 0x02AEDA9, 0x037CE91, 0x0488C9F, 0x05E507D, 0x07A9BE5, 0x09F644B, 0x0CF35A1, 0x10D5F55, 0x15E2F25, 0x1C73D6B, 0x24FCFDD, 0x3015B47, 0x3E829E9, 0x5143685 ] key_201 = [ 0x06E9C2A, 0x3CA2B3C, 0x01080DC, 0x30855EE, 0x3D3283A, 0x2F4F85A, 0x1F8808E, 0x3147D10, 0x34BBBB5, 0x29EEADD, 0x2318616, 0x50F3ADC, 0x0D11F38, 0x2123BD2, 0x4276C86, 0x355CAAD ] if version == 201: magic_bytes = key_201 else: magic_bytes = key_2 csum = 0 for i, digit in enumerate(imei): csum += ((ord(digit) * magic_bytes[i])) # Truncate to an unsigned long csum &= 0xffffffff # Extract bit integers from the checksum, get mod 10 zvar = [] for i in range(8): zvar.append(((csum & (0xf << (i * 4))) >> (i * 4)) % 10) # Add 1 to not have leading zero if zvar[0] == 0: zvar[0] = 1 # Join the array of integers return ''.join([str(i) for i in zvar]) def encrypt_v2_2(imei, version): """This algorithim is two CRC32 implementation.""" def custom_crc32(imei): """ Non standard CRC32 used in v201 and v3 """ crc_table_v201 = [ 0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x76DC419, 0x196C3671, 0x6E6B06E7, 0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0xFBD44C65, 0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB, 0x4369E96A, 0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B, 0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x90BF1D91, 0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7, 0x136C9856, 0xFA0F3D63, 0x8D080DF5, 0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59, 0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0x706AF48F, 0xE963A535, 0x9E6495A3, 0x0EDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0xB8BDA50F, 0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D, 0x76DC4190, 0x4969474D, 0x3E6E77DB, 0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9, 0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01, 0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457, 0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1, 0xF00F9344, 0x4669BE79, 0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F, 0xC5BA3BBE, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777, 0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45, 0xA00AE278, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D, 0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9, 0x5005713C, 0x270241AA, 0xBE0B1010, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433, 0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F, 0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0xCDD70693, 0x54DE5729, 0x23D967BF, 0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD, 0xEDB88320, 0x9ABFB3B6, 0x73DC1683, 0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21, 0x86D3D2D4, 0xF1D4E242, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x2D02EF8D, ] csum = 0xffffffff for i, digit in enumerate(imei): csum = crc_table_v201[(csum & 0xff) ^ ord(digit)] ^ (csum >> 8) # Truncate to unsigned int csum &= 0xffffffff return csum if version == 201: # Version 201/3 uses a custom CRC32 block crc32 = custom_crc32(imei) # Represent unsigned crc32 as signed int crc32 = struct.unpack('>i', struct.pack('>I', ~crc32 & 0xffffffff))[0] crc32 = abs(crc32) else: # Version 2 uses a standard CRC32 block crc32 = abs(binascii.crc32(imei)) & 0xffffffff if crc32 == 0: return '99999999' else: # Reverse the crc32 number, and pad on left with '9's result = list(str(crc32)[-8:]) # Replace a leading zero with nine if result[0] == '0': result[0] = '9' # Join result and pad left with 9's return ''.join(result).rjust(8, '9') def encrypt_v2_3(imei, version): """ MD5 digest algorithim """ digest = hashlib.md5(imei).digest() if version == 201: digest_bytes = list(digest[5:5+8]) else: digest_bytes = list(digest[0:8]) # Replace first digit if it begins with zero first_digit = ord(digest_bytes[0]) % 10 if (first_digit) == 0: digest_bytes[0] = '5' else: digest_bytes[0] = str(first_digit) # Use suitable digits or base 10 bytes to get a single decimal digit result = [] for byte in digest_bytes: # Byte is already a single digit character, don't mod if (byte >= '0') and (byte <= '9'): result.append(byte) else: result.append(ord(byte) % 10) return ''.join([str(i) for i in result]) def encrypt_v2_4(imei, version): """ MD5 with version specific salt """ def md5_hash(imei, key): salt = hashlib.md5(key).digest() return hashlib.md5(imei + salt).digest() if version == 201: digest = md5_hash(imei, key="dfkdkfllekkodk") else: digest = md5_hash(imei, key="hwideadatacard") code = 0 for i in range(0, 4): digit = ((ord(digest[i]) ^ ord(digest[i+4]) ^ ord(digest[i+8]) ^ ord(digest[i+12]))) code = (code << 8) | (digit & 0xff) return str((code & 0x1ffffff) | 0x2000000) def encrypt_v2_5(imei, version): """ Substitution cipher based on IMEI """ pw_table = "5739146280098765432112345678905\000" result = [] imei_str = imei + 'Z' for i in range(0, 8): digit = ((ord(imei_str[i]) ^ ord(imei_str[i+8])) & 0xff) result.append(int(pw_table[(digit >> 4) + (digit & 0x0f)])) # Dont start with zero, set first digit to the offset of the first # non-zero digit. if result[0] == 0: for i, digit in enumerate(result): if digit != 0: break result[0] = i return ''.join([str(i) for i in result]) def encrypt_v2_6(imei, version): """ SHA1 digest of IMEI """ digest = hashlib.sha1(imei).digest() # Chunk hash as unsigned integers, unpack four bytes as an unsigned int int_array = [] for i in range(0, len(digest), 4): int_array.append(str(struct.unpack(">I", digest[i:i+4])[0])) if version == 2: result = int_array[0] + int_array[1] elif version == 5: result = int_array[1] + int_array[4] elif version == 6: result = int_array[2] + int_array[3] # Pad the result with zeros to make 8 digit code return result[0:8].ljust(8, '0') def encrypt_v2_7(imei, version): """ Keyed cipher and MD5 digest """ cb_2 = [ 0x01, 0x01, 0x02, 0x03, 0x05, 0x08, 0x0D, 0x15, 0x22, 0x37, 0x59, 0x90 ] cb_201 = [ 0x0B, 0x0D, 0x11, 0x13, 0x17, 0x1D, 0x1F, 0x25, 0x29, 0x2B, 0x3B, 0x61 ] if version == 201: key = cb_201 else: key = cb_2 result = [] for i, digit in enumerate(imei): digit = ord(digit) if (i % 3) == 0: result.append(((digit << 6) | (digit >> 2)) & 0xff) elif (i % 3) == 1: result.append(((digit << 5) | (digit >> 3)) & 0xff) else: result.append(((digit >> 4) | (digit << 4)) & 0xff) hsum = 0 for i in range(0, 7): hsum += result[14-i] + (result[i] << 8) hsum += result[8] # Pad buffer with 0's buf128 = result + ([0] * (128 - len(result))) # TODO: Understand what this chunk of code does: # Appears to do divison by 6. r8 = 0 for i in range(15, 0x80): r6 = i r3 = i >> 31 lr = 0x2AAAAAAB cx = 0x2AAAAAAB * i r1 = cx >> 32 cx = lr * r8 lr = cx >> 32 r0 = r8 >> 31 r2 = r0 r5 = (r1 >> 1) - r3 r12 = r5 << 4 r0 = (lr >> 1) - r0 r2 = (lr >> 1) - r2 r1 = r0 << 4 r12 = r12 - (r5 << 2) r3 = r2 << 4 lr = r6 - r12 r1 = r1 - (r0 << 2) r7 = r5 + lr r3 = r3 - (r2 << 2) r1 = r8 - r1 r2 = r5 + r1 r3 = r8 - r3 r12 = r12 - 0x18 if r7 > 0xb: r7 = r7 - 0xc r3 += r5 if r5 > 1: r3 = r2 + r12 r0 = hsum r1 = r6 if r8 == 0: r4 = buf128[r3] r0 = r0 % r1 r1 = key[r7] r4 = r4 & r1 r12 = buf128[r0] r3 = buf128[r0+1] r4 |= r12 else: r1 = r6 r0 = hsum r4 = buf128[r3] r0 = r0 % r1 r1 = r8 r5 = buf128[r0] r0 = hsum r0 = r0 % r1 r3 = buf128[r0] r2 = key[r7] r4 = r4 & r2 r4 = r4 | r5 r3 = ~r3 r3 = r3 | r4 r3 &= 0xff buf128[i] = r3 r8 += 1 byte_array = ''.join([chr(b) for b in buf128]) csum = 0 for i in range(0, 7): csum += (ord(imei[i+1]) | (ord(imei[i]) << 8)) csum += ord(imei[14]) digest = hashlib.md5(byte_array).digest() # Pick bytes from the digest which are integers result = [] for byte in digest: if (byte >= '0') and (byte <= '9'): result.append(byte) if len(result) > 7: break def int_from_bytestream(byte_stream): """Convert a 4 byte chunk to an integer""" return struct.unpack("> 32 c1 = ((cx + csum) >> 2) - (csum >> 31) return csum - ((c1 << 3) - c1) def calc_2(imei, version): """ Select the correct crypto algorithim based on the IMEI """ # Algorithim set for v2 encryption_algo_v2 = { 0: (encrypt_v2_1, 2), 1: (encrypt_v2_2, 2), 2: (encrypt_v2_3, 2), 3: (encrypt_v2_4, 2), 4: (encrypt_v2_5, None), 5: (encrypt_v2_6, 2), 6: (encrypt_v2_7, 2), } # Algorithim set for v201 / v3 encryption_algo_v201 = { 0: (encrypt_v2_1, 201), 1: (encrypt_v2_2, 201), 2: (encrypt_v2_3, 201), 3: (encrypt_v2_4, 201), 4: (encrypt_v2_6, 5), 5: (encrypt_v2_6, 6), 6: (encrypt_v2_7, 201), } index = proc_index(imei, version) if version == 2: algorithim, algo_version = encryption_algo_v2[index] elif version == 201 or version == 3: algorithim, algo_version = encryption_algo_v201[index] return algorithim(imei, algo_version) def unlock(imei, version): """ Public unlock function Choose the correct unlock algorithim based on the version """ if version == 1: return encrypt_v1(imei, 'hwe620datacard') elif version == 2: # Version v2 return calc_2(imei, 2) elif version == 201 or version == 3: # Version v201/v3 return calc_2(imei, 201) elif version == 'flash': return encrypt_v1(imei, 'e630upgrade') def run_tests(): """ Run tests """ # These are test case which check some tricky cases. assert(encrypt_v2_1('166794546749343', 201) == '31572464') assert(encrypt_v2_2('867010022091625', 2) == '89740701') assert(encrypt_v2_2('867010022093346', 2) == '90496577') assert(encrypt_v2_2('867010022091336', 201) == '43479313') assert(encrypt_v2_2('486043736169958', 201) == '20766653') assert(encrypt_v2_2('152782107774300', 201) == '99353390') assert(encrypt_v2_3('867010022091626', 2) == '55760904') assert(encrypt_v2_3('867010022091545', 2) == '77395563') assert(encrypt_v2_3('867010022091566', 201) == '98820346') assert(encrypt_v2_3('133887909865624', 201) == '13553393') assert(encrypt_v2_4('867010022091677', 2) == '50284150') assert(encrypt_v2_4('867010022091677', 201) == '48425064') assert(encrypt_v2_5('867010022091661', 2) == '16672676') assert(encrypt_v2_5('867010022091698', 2) == '16672086') assert(encrypt_v2_6('867010022091692', 2) == '16678430') assert(encrypt_v2_6('867010022091696', 5) == '26958384') assert(encrypt_v2_6('867010022091697', 6) == '11406485') assert(encrypt_v2_7('867010022093344', 2) == '41232318') assert(encrypt_v2_7('234242342432305', 2) == '68014899') assert(encrypt_v2_7('221724677371250', 2) == '92023179') assert(encrypt_v2_7('867010022093350', 201) == '13122759') assert(proc_index('667010022091624', 201) == 2) assert(proc_index('867010022091624', 201) == 3) assert(proc_index('867010022091624', 2) == 0) assert(encrypt_v2_7('221724677371250', 2) == '92023179') # Try load extra test cases from file failed = False for test_type in [1, 2, 3]: try: test_file = os.path.join("tests", "test-{}.txt".format(test_type)) for test_line in open(test_file, 'r'): imei, expected = test_line.strip().split(' ') calculated = unlock(imei, test_type) if calculated != expected: print("Error: IMEI: %s Calculated: %s Expected: %s" % (imei, calculated, expected)) failed = True except OSError: print("Could not open test cases in '{}'.".format(test_file)) if failed: print("Tests failed") else: print("All tests passed!") def main(): parser = argparse.ArgumentParser( description="Generate Huawei device unlock codes.") parser.add_argument("imei", type=str, help="The device IMEI number") parser.add_argument('--test', action="store_true", help="Run the test cases") args = parser.parse_args() if args.test: return run_tests() if len(args.imei) != 15 or not args.imei.isdigit(): print("Not a valid IMEI") else: # Looks like a valid IMEI, calculate codes. imei = args.imei print('IMEI: {}'.format(imei)) print('Unlock (V1): {}'.format(unlock(imei, 1))) print('Unlock (V2): {}'.format(unlock(imei, 2))) print('Unlock (V3/201): {}'.format(unlock(imei, 3))) print('Flash: {}'.format(unlock(imei, 'flash'))) if __name__ == '__main__': main()