Last active
April 30, 2016 02:52
-
-
Save pengsun/ac9d40f33deba1e36e18389110994fa2 to your computer and use it in GitHub Desktop.
Revisions
-
pengsun revised this gist
Apr 30, 2016 . 1 changed file with 8 additions and 8 deletions.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -15,21 +15,21 @@ __global__ void OHNN_CudaLookupTable2_updateOutput_kernel( /// Expose extern "C" void OHNN_CudaLookupTable2_updateOutput( THCState *state, // In THCudaTensor *input, THCudaTensor *weight, // Out THCudaTensor *output) { THAssert(THCudaTensor_checkGPU(state, 3, input, weight, output)); // Cheat sheet: // B = batch size, // M = sequence length, // V = vocabulary size = input dim // C = embedding size = output dim = feature size // // input: B, M (,V) // weight: V, C // output: B, M, C -
pengsun created this gist
Apr 30, 2016 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,59 @@ __global__ void OHNN_CudaLookupTable2_updateOutput_kernel( float *inputInd, float *weight, int weightStride, int B, int M, int V, int C, float *output, int outputStride) { int iFet = blockIdx.x * blockDim.x + threadIdx.x; int iWord = blockIdx.y * blockDim.y + threadIdx.y; if (iFet < C && iWord < B*M) { int iVocab = (int)(inputInd[iWord] - 1); // C zero base <- lua one base int nSrc = iVocab * weightStride + iFet; int nDst = iWord * outputStride + iFet; output[nDst] = weight[nSrc]; } } /// Expose extern "C" void OHNN_CudaLookupTable2_updateOutput( THCState *state, // In THCudaTensor *input, THCudaTensor *weight, // Out THCudaTensor *output) { THAssert(THCudaTensor_checkGPU(state, 3, input, weight, output)); // Cheat sheet: // B = batch size, // M = sequence length, // V = vocabulary size = input dim // C = embedding size = output dim = feature size // // input: B, M (,V) // weight: V, C // output: B, M, C int B = THCudaTensor_size(state, input, 0); int M = THCudaTensor_size(state, input, 1); int V = THCudaTensor_size(state, weight, 0); int C = THCudaTensor_size(state, weight, 1); // prepare data THCudaTensor_resize2d(state, output, B*M, C); int outputStride = output->stride[0]; int weightStride = weight->stride[0]; // update output cudaStream_t stream = THCState_getCurrentStream(state); dim3 grid(DIV_CEIL(C, 32), DIV_CEIL(B*M, 32)); dim3 block(32, 32); // better memory access coalescing OHNN_CudaLookupTable2_updateOutput_kernel<<<grid, block, 0, stream>>>( THCudaTensor_data(state, input), THCudaTensor_data(state, weight), weightStride, B, M, V, C, THCudaTensor_data(state, output), outputStride ); // post process THCudaTensor_resize3d(state, output, B, M, C); }