#!/bin/zsh # requires Nvidia GPU # Update package list sudo apt update # Remove Outdated Signing Key sudo apt-key del 7fa2af80 # Install dependencies sudo apt install -y curl # Install Anaconda3 echo "Installing Anaconda3..." if [ ! -f Anaconda3-2023.03-1-Linux-x86_64.sh ]; then wget https://repo.anaconda.com/archive/Anaconda3-2023.03-1-Linux-x86_64.sh fi bash Anaconda3-2023.03-1-Linux-x86_64.sh -u -p $HOME/anaconda3 # Add Anaconda3 to the PATH echo ". $HOME/anaconda3/etc/profile.d/conda.sh" >> $HOME/.zshrc source ~/.zshrc # Create a new conda environment echo "Creating a new conda environment..." conda create -n bark_env python=3.8 -y # Activate the conda environment echo "Activating the conda environment..." conda activate bark_env # Install Bark and other necessary packages echo "Installing Bark and other necessary packages..." pip install git+https://github.com/suno-ai/bark.git conda install -y scipy conda install -y ipykernel conda install -y notebook conda install -c conda-forge ipywidgets # Add the conda environment to Jupyter echo "Adding the conda environment to Jupyter..." python3 -m ipykernel install --user --name=bark_env # Install Cuda echo "Installing Cuda..." if [ ! -f cuda_12.1.1_530.30.02_linux.run ]; then wget https://developer.download.nvidia.com/compute/cuda/12.1.1/local_installers/cuda_12.1.1_530.30.02_linux.run fi sudo sh cuda_12.1.1_530.30.02_linux.run # For WSL, do not install cuda-drivers or cuda-toolkit using apt-get # Follow the instructions provided in the NVIDIA WSL User Guide: # https://docs.nvidia.com/cuda/wsl-user-guide/index.html#installing-nvidia-driver # Launch Jupyter Notebook echo "Launching Jupyter Notebook..." jupyter notebook