### Implementation of Prompt Alternating for LLMs import torch from transformers import GPT2LMHeadModel, GPT2Tokenizer def prompt_alternating(prompt, insert_position, alternate_prompts, num_tokens): model = GPT2LMHeadModel.from_pretrained("gpt2") tokenizer = GPT2Tokenizer.from_pretrained("gpt2") prompt_tokens = tokenizer.encode(prompt, return_tensors="pt") output_tokens = prompt_tokens.clone() for _ in range(num_tokens): alternate_index = len(output_tokens[0]) % len(alternate_prompts) alternate = alternate_prompts[alternate_index] alternate_tokens = tokenizer.encode(alternate, return_tensors="pt") print(prompt_tokens[:, :insert_position]) print(alternate_tokens) print(output_tokens[:, insert_position:]) input_ids = torch.cat((prompt_tokens[:, :insert_position], alternate_tokens, output_tokens[:, insert_position:]), dim=-1) next_token = model.generate(input_ids, max_length=input_ids.shape[1] + 1, do_sample = True)[:, -1].unsqueeze(0) output_tokens = torch.cat((output_tokens, next_token), dim=-1) generated_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True) return generated_text prompt = "This is a apple" insert_position = 3 alternate_prompts = ["blue", "red", "yellow"] num_tokens = 100 result = prompt_alternating(prompt, insert_position, alternate_prompts, num_tokens) print(result)