"""CNN from https://www.microsoft.com/en-us/research/wp-content/uploads/2003/08/icdar03.pdf""" from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=True) import tensorflow as tf def weight_variable(shape): initial = tf.random_normal(shape, stddev=0.05) return tf.Variable(initial) def bias_variable(shape): initial = tf.constant(0.1, shape=shape) return tf.Variable(initial) def conv2d(x, W): return tf.nn.conv2d(x, W, strides=[1,2,2,1], padding='VALID') x = tf.placeholder(tf.float32, [None, 28*28]) y_ = tf.placeholder(tf.float32, [None, 10]) _x = tf.reshape(x, [-1, 28, 28, 1]) x_image = tf.image.resize_bilinear(_x, (29, 29)) W_conv1 = weight_variable([5, 5, 1, 5]) b_conv1 = bias_variable([5]) h_1 = tf.nn.sigmoid( conv2d(x_image, W_conv1) + b_conv1 ) W_conv2 = weight_variable([5, 5, 5, 50]) b_conv2 = bias_variable([50]) h_2 = tf.nn.sigmoid( conv2d(h_1, W_conv2) + b_conv2 ) h_2_flattened = tf.reshape(h_2, [-1, 5*5*50]) W_3 = tf.Variable(tf.random_normal([5*5*50, 100], stddev=.05)) b_3 = tf.Variable(tf.random_normal([100], stddev=.05)) h_3 = tf.nn.sigmoid( tf.matmul(h_2_flattened, W_3) + b_3 ) W_4 = tf.Variable(tf.random_normal([100, 10], stddev=.05)) b_4 = tf.Variable(tf.random_normal([10], stddev=.05)) y = tf.nn.softmax( tf.matmul(h_3, W_4) + b_4 ) cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1])) correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) num_train_images = mnist.train.images.shape[0] num_epochs = 1000 minibatch_size = 10 learning_rate = 0.005 alpha = 0.3 learning_rate_ = tf.placeholder(tf.float32, shape=[]) train_step = tf.train.GradientDescentOptimizer(learning_rate_).minimize(cross_entropy) assert num_train_images % minibatch_size == 0 with tf.Session() as sess: sess.run(tf.initialize_all_variables()) for epoch in range(num_epochs): for i in range(num_train_images // minibatch_size): batch = mnist.train.next_batch(minibatch_size) train_step.run(feed_dict={x: batch[0], y_: batch[1], learning_rate_: learning_rate}) if epoch > 0 and epoch % 100 == 0: learning_rate *= alpha print ("epoch %d" % epoch) validation_accuracy = accuracy.eval(feed_dict={x: mnist.validation.images, y_: mnist.validation.labels}) print( "validation accuracy %g" % validation_accuracy) test_accuracy = accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}) print("test accuracy %g" % test_accuracy)