Created
January 1, 2023 20:51
-
-
Save softwaredoug/804eb9cb960f722f0c46d355a21936ba to your computer and use it in GitHub Desktop.
Revisions
-
softwaredoug created this gist
Jan 1, 2023 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,84 @@ import numpy as np import os from time import perf_counter from sentence_transformers import SentenceTransformer, LoggingHandler import logging logging.basicConfig(format='%(asctime)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.DEBUG, handlers=[LoggingHandler()]) def encode(sentences, chunk_size=20000): print("Loaded sentences") model_mini = SentenceTransformer('all-MiniLM-L6-v2') model_mpnet = SentenceTransformer('all-mpnet-base-v2') pool = model_mpnet.start_multi_process_pool() start = perf_counter() # pool = model.start_multi_process_pool() for chunk in range(0, len(sentences), chunk_size): mini_fname = f"data/wikisent2_{chunk}.npz" mpnet_fname = f"data/wikisent2-mpnet_{chunk}.npz" begin = chunk end = chunk + chunk_size if not os.path.exists(mini_fname): print(f"Processing mini {chunk}") embeddings = model_mini.encode(sentences[begin:end], show_progress_bar=True) print(f"Encoded sentences chunk {chunk} ({begin}-{end}) - {perf_counter() - start}") np.savez(mini_fname, embeddings) print("Saved sentences") else: print(f"Skipping mini {chunk}") if not os.path.exists(mpnet_fname): print(f"Processing mpnet {chunk}") embeddings = model_mpnet.encode_multi_process(sentences[begin:end], pool) print(f"Encoded sentences chunk {chunk} ({begin}-{end}) - {perf_counter() - start}") np.savez(mpnet_fname, embeddings) print("Saved sentences") else: print(f"Skipping mpnet {chunk}") def append(encoding="mini"): # Iterate all files in data/ # Load them and append to a single file # This is to make it easier to load the data # in the future if encoding == "mini": encoding = "" files = [] # Get all wikisent2_*.npz files in a list for fname in os.listdir("data"): if encoding != "": if fname.startswith(f"wikisent2-{encoding}") and fname.endswith(".npz"): files.append(fname) # Sort by chunk number files.sort(key=lambda x: int(x.split("_")[1].split(".")[0])) # Load and append into one numpy array arrs = [] for fname in files: print(f"Loading {fname}") arrs.append(np.load(f"data/{fname}").get("arr_0")) print("Concatenating") arr = np.concatenate(arrs) print(arr.shape) np.savez("data/wikisent2_{encoding}_all.npz", arr) if __name__ == "__main__": sentences = [] with open('wikisent2.txt') as f: sentences = [line for line in f] encode(sentences) # append("mini") append("mpnet")