from sentence_transformers import SentenceTransformer # Load the pre-trained model model = SentenceTransformer('stsb-mpnet-base-v2') # Generate Embeddings sentence1_emb = model.encode(stsb_test['sentence1'], show_progress_bar=True) sentence2_emb = model.encode(stsb_test['sentence2'], show_progress_bar=True) # Cosine Similarity stsb_test['SBERT BiEncoder_cosine_score'] = cos_sim(sentence1_emb, sentence2_emb)