model = OneClassSVM(kernel='rbf') model.fit(X_train) #model.fit(X_test) y_train = model.predict(X_train) y_test = model.predict(X_test) y_ndata = model.predict(X_data) #number of anomalies train = y_train[y_train == 1].size test = y_test[y_train == 1].size print("Size of inliers in Train set:", train) print("Size of inliers in Test set:", test) print("Size of inliers in Real data:", y_ndata[y_ndata == 1].size) train_anomaly = y_train[y_train == -1].size test_anomaly = y_train[y_train == -1].size print("Size of outliers in Train set:", train_anomaly) print("Size of outliers in Test set:", test_anomaly) print("Size of outliers in Real data:", y_ndata[y_ndata == -1].size)