Skip to content

Instantly share code, notes, and snippets.

@swayson
Forked from baraldilorenzo/readme.md
Created January 16, 2016 13:12
Show Gist options
  • Save swayson/020b944eb5a76890af44 to your computer and use it in GitHub Desktop.
Save swayson/020b944eb5a76890af44 to your computer and use it in GitHub Desktop.

Revisions

  1. @baraldilorenzo baraldilorenzo created this gist Jan 16, 2016.
    22 changes: 22 additions & 0 deletions readme.md
    Original file line number Diff line number Diff line change
    @@ -0,0 +1,22 @@
    ##VGG19 model for Keras

    This is the [Keras](http://keras.io/) model of the 19-layer network used by the VGG team in the ILSVRC-2014 competition.

    It has been obtained by directly converting the [Caffe model](https://gist.github.com/ksimonyan/3785162f95cd2d5fee77#file-readme-md) provived by the authors.

    Details about the network architecture can be found in the following arXiv paper:

    Very Deep Convolutional Networks for Large-Scale Image Recognition
    K. Simonyan, A. Zisserman
    arXiv:1409.1556


    In the paper, the VGG-19 model is denoted as configuration `E`. It achieves 7.5% top-5 error on ILSVRC-2012-val, 7.3% top-5 error on ILSVRC-2012-test.

    Please cite the paper if you use the models.

    ###Contents:

    model and usage demo: see `vgg-19_keras.py`

    weights: [vgg19_weights.h5](https://drive.google.com/file/d/0Bz7KyqmuGsilZ2RVeVhKY0FyRmc/view?usp=sharing)
    76 changes: 76 additions & 0 deletions vgg-19_keras.py
    Original file line number Diff line number Diff line change
    @@ -0,0 +1,76 @@
    from keras.models import Sequential
    from keras.layers.core import Flatten, Dense, Dropout
    from keras.layers.convolutional import Convolution2D, MaxPooling2D, ZeroPadding2D
    from keras.optimizers import SGD
    import cv2, numpy as np

    def VGG_19(weights_path=None):
    model = Sequential()
    model.add(ZeroPadding2D((1,1),input_shape=(3,224,224)))
    model.add(Convolution2D(64, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(64, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(128, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(128, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(256, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(256, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(256, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(256, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(ZeroPadding2D((1,1)))
    model.add(Convolution2D(512, 3, 3, activation='relu'))
    model.add(MaxPooling2D((2,2), strides=(2,2)))

    model.add(Flatten())
    model.add(Dense(4096, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(4096, activation='relu'))
    model.add(Dropout(0.5))
    model.add(Dense(1000, activation='softmax'))

    if weights_path:
    model.load_weights(weights_path)

    return model

    if __name__ == "__main__":
    im = cv2.resize(cv2.imread('cat.jpg'), (224, 224)).astype(np.float32)
    im[:,:,0] -= 103.939
    im[:,:,1] -= 116.779
    im[:,:,2] -= 123.68
    im = im.transpose((2,0,1))
    im = np.expand_dims(im, axis=0)

    # Test pretrained model
    model = VGG_19('vgg19_weights.h5')
    sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
    model.compile(optimizer=sgd, loss='categorical_crossentropy')
    out = model.predict(im)
    print np.argmax(out)