# Copyright 2017 Google, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import os import tensorflow as tf import urllib LOGDIR = '/tmp/mnist_tutorial/' GIST_URL = 'https://gist.github.com/dandelionmane/4f02ab8f1451e276fea1f165a20336f1/raw/dfb8ee95b010480d56a73f324aca480b3820c180' ### MNIST EMBEDDINGS ### mnist = tf.contrib.learn.datasets.mnist.read_data_sets(train_dir=LOGDIR + 'data', one_hot=True) ### Get a sprite and labels file for the embedding projector ### urllib.urlretrieve(GIST_URL + 'labels_1024.tsv', LOGDIR + 'labels_1024.tsv') urllib.urlretrieve(GIST_URL + 'sprite_1024.png', LOGDIR + 'sprite_1024.png') def conv_layer(input, size_in, size_out, name="conv"): with tf.name_scope(name): w = tf.Variable(tf.truncated_normal([5, 5, size_in, size_out], stddev=0.1), name="W") b = tf.Variable(tf.constant(0.1, shape=[size_out]), name="B") conv = tf.nn.conv2d(input, w, strides=[1, 1, 1, 1], padding="SAME") act = tf.nn.relu(conv + b) tf.summary.histogram("weights", w) tf.summary.histogram("biases", b) tf.summary.histogram("activations", act) return tf.nn.max_pool(act, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME") def fc_layer(input, size_in, size_out, name="fc"): with tf.name_scope(name): w = tf.Variable(tf.truncated_normal([size_in, size_out], stddev=0.1), name="W") b = tf.Variable(tf.constant(0.1, shape=[size_out]), name="B") act = tf.nn.relu(tf.matmul(input, w) + b) tf.summary.histogram("weights", w) tf.summary.histogram("biases", b) tf.summary.histogram("activations", act) return act def mnist_model(learning_rate, use_two_conv, use_two_fc, hparam): tf.reset_default_graph() sess = tf.Session() # Setup placeholders, and reshape the data x = tf.placeholder(tf.float32, shape=[None, 784], name="x") x_image = tf.reshape(x, [-1, 28, 28, 1]) tf.summary.image('input', x_image, 3) y = tf.placeholder(tf.float32, shape=[None, 10], name="labels") if use_two_conv: conv1 = conv_layer(x_image, 1, 32, "conv1") conv_out = conv_layer(conv1, 32, 64, "conv2") else: conv1 = conv_layer(x_image, 1, 64, "conv") conv_out = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME") flattened = tf.reshape(conv_out, [-1, 7 * 7 * 64]) if use_two_fc: fc1 = fc_layer(flattened, 7 * 7 * 64, 1024, "fc1") embedding_input = fc1 embedding_size = 1024 logits = fc_layer(fc1, 1024, 10, "fc2") else: embedding_input = flattened embedding_size = 7*7*64 logits = fc_layer(flattened, 7*7*64, 10, "fc") with tf.name_scope("xent"): xent = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits( logits=logits, labels=y), name="xent") tf.summary.scalar("xent", xent) with tf.name_scope("train"): train_step = tf.train.AdamOptimizer(learning_rate).minimize(xent) with tf.name_scope("accuracy"): correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) tf.summary.scalar("accuracy", accuracy) summ = tf.summary.merge_all() embedding = tf.Variable(tf.zeros([1024, embedding_size]), name="test_embedding") assignment = embedding.assign(embedding_input) saver = tf.train.Saver() sess.run(tf.global_variables_initializer()) writer = tf.summary.FileWriter(LOGDIR + hparam) writer.add_graph(sess.graph) config = tf.contrib.tensorboard.plugins.projector.ProjectorConfig() embedding_config = config.embeddings.add() embedding_config.tensor_name = embedding.name embedding_config.sprite.image_path = LOGDIR + 'sprite_1024.png' embedding_config.metadata_path = LOGDIR + 'labels_1024.tsv' # Specify the width and height of a single thumbnail. embedding_config.sprite.single_image_dim.extend([28, 28]) tf.contrib.tensorboard.plugins.projector.visualize_embeddings(writer, config) for i in range(2001): batch = mnist.train.next_batch(100) if i % 5 == 0: [train_accuracy, s] = sess.run([accuracy, summ], feed_dict={x: batch[0], y: batch[1]}) writer.add_summary(s, i) if i % 500 == 0: sess.run(assignment, feed_dict={x: mnist.test.images[:1024], y: mnist.test.labels[:1024]}) saver.save(sess, os.path.join(LOGDIR, "model.ckpt"), i) sess.run(train_step, feed_dict={x: batch[0], y: batch[1]}) def make_hparam_string(learning_rate, use_two_fc, use_two_conv): conv_param = "conv=2" if use_two_conv else "conv=1" fc_param = "fc=2" if use_two_fc else "fc=1" return "lr_%.0E,%s,%s" % (learning_rate, conv_param, fc_param) def main(): # You can try adding some more learning rates for learning_rate in [1E-4]: # Include "False" as a value to try different model architectures for use_two_fc in [True]: for use_two_conv in [True]: # Construct a hyperparameter string for each one (example: "lr_1E-3,fc=2,conv=2) hparam = make_hparam_string(learning_rate, use_two_fc, use_two_conv) print('Starting run for %s' % hparam) # Actually run with the new settings mnist_model(learning_rate, use_two_fc, use_two_conv, hparam) if __name__ == '__main__': main()