Skip to content

Instantly share code, notes, and snippets.

@tscholl2
Last active October 27, 2019 13:20
Show Gist options
  • Select an option

  • Save tscholl2/412b6c8cc44c84debbe08c0cca98b42a to your computer and use it in GitHub Desktop.

Select an option

Save tscholl2/412b6c8cc44c84debbe08c0cca98b42a to your computer and use it in GitHub Desktop.
list of Certicom curves
# Curve25519
p = 2^255 - 19
N = 8*(2^252 + 27742317777372353535851937790883648493)
E = EllipticCurve(GF(p),[0,486662,0,1,0])
G = E.lift_x(9)
assert E.count_points() == N
assert G.order() == N/8
# To verify some properties:
# E = EllipticCurve(GF(p),[a,b])
# G = E([Gx,Gy])
# assert n*G == 0
# assert n.is_prime()
# assert E.count_points() == n # all these curves have cofactor 1
# 192k1
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFEE37
a = 0x000000000000000000000000000000000000000000000000
b = 0x000000000000000000000000000000000000000000000003
Gx= 0xDB4FF10EC057E9AE26B07D0280B7F4341DA5D1B1EAE06C7D
Gy= 0x9B2F2F6D9C5628A7844163D015BE86344082AA88D95E2F9D
n = 0xFFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8D
# 192r1
S = 0x3045AE6FC8422F64ED579528D38120EAE12196D5
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFF
a = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFC
b = 0x64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1
Gx= 0x188DA80EB03090F67CBF20EB43A18800F4FF0AFD82FF1012
Gy= 0x07192B95FFC8DA78631011ED6B24CDD573F977A11E794811
n = 0xFFFFFFFFFFFFFFFFFFFFFFFF99DEF836146BC9B1B4D22831
# 224k1
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFE56D
a = 0x00000000000000000000000000000000000000000000000000000000
b = 0x00000000000000000000000000000000000000000000000000000005
Gx= 0xA1455B334DF099DF30FC28A169A467E9E47075A90F7E650EB6B7A45C
Gy= 0x7E089FED7FBA344282CAFBD6F7E319F7C0B0BD59E2CA4BDB556D61A5
n = 0x010000000000000000000000000001DCE8D2EC6184CAF0A971769FB1F7
# 224r1
S = 0xBD71344799D5C7FCDC45B59FA3B9AB8F6A948BC5
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001
a = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFE
b = 0xB4050A850C04B3ABF54132565044B0B7D7BFD8BA270B39432355FFB4
Gx= 0xB70E0CBD6BB4BF7F321390B94A03C1D356C21122343280D6115C1D21
Gy= 0xBD376388B5F723FB4C22DFE6CD4375A05A07476444D5819985007E34
n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D
# 256k1
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F
a = 0x0000000000000000000000000000000000000000000000000000000000000000
b = 0x0000000000000000000000000000000000000000000000000000000000000007
Gx= 0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
Gy= 0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8
n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141
# 256r1
S = 0xC49D360886E704936A6678E1139D26B7819F7E90
p = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF
a = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC
b = 0x5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B
Gx= 0x6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296
Gy= 0x4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5
n = 0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551
# 384r1
S = 0xA335926AA319A27A1D00896A6773A4827ACDAC73
p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF
a = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFC
b = 0xB3312FA7E23EE7E4988E056BE3F82D19181D9C6EFE8141120314088F5013875AC656398D8A2ED19D2A85C8EDD3EC2AEF
Gx= 0xAA87CA22BE8B05378EB1C71EF320AD746E1D3B628BA79B9859F741E082542A385502F25DBF55296C3A545E3872760AB7
Gy= 0x3617DE4A96262C6F5D9E98BF9292DC29F8F41DBD289A147CE9DA3113B5F0B8C00A60B1CE1D7E819D7A431D7C90EA0E5F
n = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973
# 521r1
S = 0xD09E8800291CB85396CC6717393284AAA0DA64BA
p = 0x01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
a = 0x01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC
b = 0x0051953EB9618E1C9A1F929A21A0B68540EEA2DA725B99B315F3B8B489918EF109E156193951EC7E937B1652C0BD3BB1BF073573DF883D2C34F1EF451FD46B503F00
Gx= 0x00C6858E06B70404E9CD9E3ECB662395B4429C648139053FB521F828AF606B4D3DBAA14B5E77EFE75928FE1DC127A2FFA8DE3348B3C1856A429BF97E7E31C2E5BD66
Gy= 0x011839296A789A3BC0045C8A5FB42C7D1BD998F54449579B446817AFBD17273E662C97EE72995EF42640C550B9013FAD0761353C7086A272C24088BE94769FD16650
n = 0x01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148F709A5D03BB5C9B8899C47AEBB6FB71E91386409
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment