import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import StoppingCriteria, StoppingCriteriaList, LogitsProcessor, LogitsProcessorList model_path = "./qlora-out-hkg_300B/merged/" tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto", trust_remote_code=True) def format_prompt(message, history): prompt = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\n" for user_prompt, bot_response in history: prompt += f"USER: {user_prompt} \n" prompt += f"ASSISTANT: {bot_response} " prompt += f"USER: {message} \nASSISTANT: " return prompt class EndOfFunctionCriteria(StoppingCriteria): """Custom `StoppingCriteria` which checks if all generated functions in the batch are completed.""" def __init__(self, start_length, eof_strings, tokenizer): self.start_length = start_length self.eof_strings = eof_strings self.tokenizer = tokenizer def __call__(self, input_ids, scores, **kwargs): """Returns true if all generated sequences contain any of the end-of-function strings.""" decoded_generations = self.tokenizer.batch_decode( input_ids[:, self.start_length :] ) done = [] for decoded_generation in decoded_generations: done.append( any( [ stop_string in decoded_generation for stop_string in self.eof_strings ] ) ) return all(done) def generate( prompt, history, temperature=0.3, max_new_tokens=256, top_p=0.9, repetition_penalty=1.0, ): global tokenizer, model temperature = float(temperature) if temperature < 1e-2: temperature = 1e-2 top_p = float(top_p) generate_kwargs = dict( temperature=temperature, max_new_tokens=max_new_tokens, top_p=top_p, repetition_penalty=repetition_penalty, do_sample=True, ) formatted_prompt = format_prompt(prompt, history) print("formatted_prompt:", [formatted_prompt]) inputs = tokenizer([formatted_prompt], return_tensors="pt") input_ids = inputs["input_ids"] _, prefix_length = input_ids.shape eof_strings = ["USER:", "ASSISTANT:"] stopping_criteria = StoppingCriteriaList([EndOfFunctionCriteria(start_length=prefix_length, eof_strings=eof_strings, tokenizer=tokenizer)]) generate_kwargs["stopping_criteria"] = stopping_criteria output_ids = model.generate(input_ids.to('cuda'), **generate_kwargs) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) for eof in eof_strings: if response.strip().endswith(eof): response = response.strip()[:-len(eof)] output = response return output mychatbot = gr.Chatbot( # avatar_images=["./user.png", "./botm.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,) demo = gr.ChatInterface(fn=generate, chatbot=mychatbot, title="Let's Chat", retry_btn=None, undo_btn=None, ) demo.queue().launch(show_api=False, share=True)