Skip to content

Instantly share code, notes, and snippets.

@CrazyDaffodils
Last active January 13, 2020 23:33
Show Gist options
  • Select an option

  • Save CrazyDaffodils/08897de11a9f0be0ce027d87f7ad4264 to your computer and use it in GitHub Desktop.

Select an option

Save CrazyDaffodils/08897de11a9f0be0ce027d87f7ad4264 to your computer and use it in GitHub Desktop.
from sklearn.decomposition import PCA
import seaborn as sns
#Visualize data using Principal Component Analysis.
print("Principal Component Analysis (PCA)")
pca = PCA(n_components = 2).fit_transform(X_std)
pca_df = pd.DataFrame(data=pca, columns=['PC1','PC2']).join(labels)
palette = sns.color_palette("muted", n_colors=5)
sns.set_style("white")
sns.scatterplot(x='PC1',y='PC2',hue='Class',data=pca_df, palette=palette, linewidth=0.2, s=30, alpha=1).set_title('PCA')
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment