Last active
August 27, 2025 05:28
-
-
Save FrankBuss/c974e59826d33e21d7cad54491ab50e8 to your computer and use it in GitHub Desktop.
Revisions
-
Frank-Buss revised this gist
Dec 13, 2018 . 1 changed file with 2 additions and 0 deletions.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -1,4 +1,6 @@ /* See https://gitlab.com/nedopc/npc5/blob/master/emu-rv32i.c for the latest version, with more features and less bugs :-) RISCV emulator for the RV32I architecture based on TinyEMU by Fabrice Bellard, see https://bellard.org/tinyemu/ stripped down for RV32I only, all "gotos" removed, and fixed some bugs for the compliance test -
Frank-Buss revised this gist
Nov 18, 2018 . 1 changed file with 360 additions and 114 deletions.There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -1,19 +1,43 @@ /* RISCV emulator for the RV32I architecture based on TinyEMU by Fabrice Bellard, see https://bellard.org/tinyemu/ stripped down for RV32I only, all "gotos" removed, and fixed some bugs for the compliance test by Frank Buss, 2018 Requires libelf-dev: sudo apt-get install libelf-dev Compile it like this: g++ -O3 -Wall -lelf emulator.cpp -o emulator It is compatible to Spike for the command line arguments, which means you can run the compliance test from https://github.com/riscv/riscv-compliance like this: make RISCV_TARGET=spike RISCV_DEVICE=rv32i TARGET_SIM=/full/path/emulator variant It is also compatible with qemu32, as it is used for Zephyr. You can compile the Zephyr examples for qemu like this: cd zephyr source zephyr-env.sh cd samples/synchronization mkdir build && cd build cmake -GNinja -DBOARD=qemu_riscv32 .. ninja After this you can run it with the emulator like this: /full/path/emulator zephyr/zephyr.elf original copyright: */ /* * RISCV emulator * @@ -49,16 +73,36 @@ #include <stdint.h> #include <string.h> #include <unistd.h> #include <time.h> #include <libelf.h> #include <gelf.h> // uncomment this for an instruction trace and other debug outputs //#define DEBUG_OUTPUT // memory mapped registers #define MTIME_ADDR 0x40000000 #define MTIMECMP_ADDR 0x40000008 #define UART_TX_ADDR 0x40002000 // emulator RAM #define RAM_SIZE 0x10000 uint8_t ram[RAM_SIZE]; // special memory mapped registers uint64_t mtime; uint64_t mtimecmp; // virtual start address for index 0 in the ram array uint32_t ram_start; // used when called from the compliance tests uint32_t begin_signature = 0; uint32_t end_signature = 0; // is set to false to exit the emulator bool machine_running = true; // privilege levels #define PRV_U 0 #define PRV_S 1 @@ -103,7 +147,6 @@ uint32_t satp; uint32_t scounteren; uint32_t load_res; /* for atomic LR/SC */ // exception causes #define CAUSE_MISALIGNED_FETCH 0x0 #define CAUSE_FAULT_FETCH 0x1 @@ -120,8 +163,6 @@ uint32_t load_res; /* for atomic LR/SC */ #define CAUSE_FETCH_PAGE_FAULT 0xc #define CAUSE_LOAD_PAGE_FAULT 0xd #define CAUSE_STORE_PAGE_FAULT 0xf #define CAUSE_INTERRUPT ((uint32_t)1 << 31) /* misa CSR */ @@ -177,9 +218,6 @@ uint32_t load_res; /* for atomic LR/SC */ #define MSTATUS_UXL_MASK ((uint64_t)3 << MSTATUS_UXL_SHIFT) #define MSTATUS_SXL_MASK ((uint64_t)3 << MSTATUS_SXL_SHIFT) int ctz32(uint32_t a) { int i; @@ -225,33 +263,27 @@ uint32_t get_mstatus(uint32_t mask) void set_mstatus(uint32_t val) { fs = (val >> MSTATUS_FS_SHIFT) & 3; uint32_t mask = MSTATUS_MASK & ~MSTATUS_FS; mstatus = (mstatus & ~mask) | (val & mask); } void invalid_csr(uint32_t *pval, uint32_t csr) { /* the 'time' counter is usually emulated */ if (csr != 0xc01 && csr != 0xc81) { #ifdef DEBUG_OUTPUT printf("csr_read: invalid CSR=0x%x\n", csr); #endif } *pval = 0; } /* return -1 if invalid CSR. 0 if OK. 'will_write' indicate that the csr will be written after (used for CSR access check) */ int csr_read(uint32_t *pval, uint32_t csr, bool will_write) { uint32_t val; @@ -376,7 +408,8 @@ int csr_read(uint32_t *pval, uint32_t csr, break; default: invalid_csr(pval, csr); //return -1; return 0; } *pval = val; return 0; @@ -431,7 +464,6 @@ int csr_write(uint32_t csr, uint32_t val) satp = (val & (((uint32_t)1 << 22) - 1)) | (new_mode << 31); } return 2; case 0x300: @@ -474,7 +506,8 @@ int csr_write(uint32_t csr, uint32_t val) mip = (mip & ~mask) | (val & mask); break; default: return 0; // return -1; } return 0; } @@ -513,10 +546,15 @@ void handle_mret() void raise_exception(uint32_t cause, uint32_t tval) { bool deleg; // exit for Zephyr applications if (cause == CAUSE_ILLEGAL_INSTRUCTION) { machine_running = false; return; } if (priv <= PRV_S) { /* delegate the exception to the supervisor priviledge */ @@ -528,12 +566,8 @@ void raise_exception(uint32_t cause, deleg = 0; } if (deleg) { scause = cause; sepc = pc; stval = tval; mstatus = (mstatus & ~MSTATUS_SPIE) | @@ -544,7 +578,7 @@ void raise_exception(uint32_t cause, priv = PRV_S; next_pc = stvec; } else { mcause = cause; mepc = pc; mtval = tval; mstatus = (mstatus & ~MSTATUS_MPIE) | @@ -608,9 +642,14 @@ uint32_t get_insn32(uint32_t pc) int target_read_u8(uint8_t *pval, uint32_t addr) { addr -= ram_start; if (addr > RAM_SIZE) { *pval = 0; printf("illegal read 8, PC: 0x%08x, address: 0x%08x\n", pc, addr + ram_start); return 1; } else { uint8_t* p = ram + addr; *pval = p[0]; } return 0; } @@ -622,9 +661,14 @@ int target_read_u16(uint16_t *pval, uint32_t addr) return 1; } addr -= ram_start; if (addr > RAM_SIZE) { *pval = 0; printf("illegal read 16, PC: 0x%08x, address: 0x%08x\n", pc, addr + ram_start); return 1; } else { uint8_t* p = ram + addr; *pval = p[0] | (p[1] << 8); } return 0; } @@ -635,24 +679,42 @@ int target_read_u32(uint32_t *pval, uint32_t addr) pending_tval = addr; return 1; } if (addr == MTIMECMP_ADDR) { *pval = (uint32_t) mtimecmp; } else if (addr == MTIMECMP_ADDR + 4) { *pval = (uint32_t) (mtimecmp >> 32); } else if (addr == MTIME_ADDR) { *pval = (uint32_t) mtime; } else if (addr == MTIME_ADDR + 4) { *pval = (uint32_t) (mtime >> 32); } else { addr -= ram_start; if (addr > RAM_SIZE) { *pval = 0; printf("illegal read 32, PC: 0x%08x, address: 0x%08x\n", pc, addr + ram_start); return 1; } else { uint8_t* p = ram + addr; *pval = p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24); } } return 0; } int target_write_u8(uint32_t addr, uint8_t val) { if (addr == UART_TX_ADDR) { // test for UART output, compatible with QEMU printf("%c", val); } else { addr -= ram_start; if (addr > RAM_SIZE - 1) { printf("illegal write 8, PC: 0x%08x, address: 0x%08x\n", pc, addr + ram_start); return 1; } else { uint8_t* p = ram + addr; p[0] = val & 0xff; } } return 0; } @@ -665,46 +727,155 @@ int target_write_u16(uint32_t addr, uint16_t val) return 1; } addr -= ram_start; if (addr > RAM_SIZE - 2) { printf("illegal write 16, PC: 0x%08x, address: 0x%08x\n", pc, addr + ram_start); return 1; } else { uint8_t* p = ram + addr; p[0] = val & 0xff; p[1] = (val >> 8) & 0xff; } return 0; } void write_mtimecmp(uint64_t value) { mtimecmp = value; mip &= ~MIP_MTIP; } int target_write_u32(uint32_t addr, uint32_t val) { if (addr & 3) { pending_exception = CAUSE_MISALIGNED_STORE; pending_tval = addr; return 1; } if (addr == MTIMECMP_ADDR) { write_mtimecmp((mtimecmp & 0xffffffff00000000ll) | val); } else if (addr == MTIMECMP_ADDR + 4) { write_mtimecmp((mtimecmp & 0xffffffffll) | (((uint64_t)val) << 32)); } else { addr -= ram_start; if (addr > RAM_SIZE - 4) { return 1; } else { uint8_t* p = ram + addr; p[0] = val & 0xff; p[1] = (val >> 8) & 0xff; p[2] = (val >> 16) & 0xff; p[3] = (val >> 24) & 0xff; } } return 0; } int32_t div32(int32_t a, int32_t b) { if (b == 0) { return -1; } else if (a == ((int32_t)1 << (XLEN - 1)) && b == -1) { return a; } else { return a / b; } } uint32_t divu32(uint32_t a, uint32_t b) { if (b == 0) { return -1; } else { return a / b; } } int32_t rem32(int32_t a, int32_t b) { if (b == 0) { return a; } else if (a == ((int32_t)1 << (XLEN - 1)) && b == -1) { return 0; } else { return a % b; } } uint32_t remu32(uint32_t a, uint32_t b) { if (b == 0) { return a; } else { return a % b; } } static uint32_t mulh32(int32_t a, int32_t b) { return ((int64_t)a * (int64_t)b) >> 32; } static uint32_t mulhsu32(int32_t a, uint32_t b) { return ((int64_t)a * (int64_t)b) >> 32; } static uint32_t mulhu32(uint32_t a, uint32_t b) { return ((int64_t)a * (int64_t)b) >> 32; } /* // dumps all registers, useful for in-depth debugging static void dump_regs() { printf("x0 zero: %08x\n", reg[0]); printf("x1 ra: %08x\n", reg[1]); printf("x2 sp: %08x\n", reg[2]); printf("x3 gp: %08x\n", reg[3]); printf("x4 tp: %08x\n", reg[4]); printf("x5 t0: %08x\n", reg[5]); printf("x6 t1: %08x\n", reg[6]); printf("x7 t2: %08x\n", reg[7]); printf("x8 s0: %08x\n", reg[8]); printf("x9 s1: %08x\n", reg[9]); printf("x10 a0: %08x\n", reg[10]); printf("x11 a1: %08x\n", reg[11]); printf("x12 a2: %08x\n", reg[12]); printf("x13 a3: %08x\n", reg[13]); printf("x14 a4: %08x\n", reg[14]); printf("x15 a5: %08x\n", reg[15]); printf("x16 a6: %08x\n", reg[16]); printf("x17 a7: %08x\n", reg[17]); printf("x18 s2: %08x\n", reg[18]); printf("x19 s3: %08x\n", reg[19]); printf("x20 s4: %08x\n", reg[20]); printf("x21 s5: %08x\n", reg[21]); printf("x22 s6: %08x\n", reg[22]); printf("x23 s7: %08x\n", reg[23]); printf("x24 s8: %08x\n", reg[24]); printf("x25 s9: %08x\n", reg[25]); printf("x26 s10: %08x\n", reg[26]); printf("x27 s11: %08x\n", reg[27]); printf("x28 t3: %08x\n", reg[28]); printf("x29 t4: %08x\n", reg[29]); printf("x30 t5: %08x\n", reg[30]); printf("x31 t6: %08x\n", reg[31]); } */ void execute_instruction() { uint32_t opcode, rd, rs1, rs2, funct3; int32_t imm, cond, err; uint32_t addr, val, val2; opcode = insn & 0x7f; rd = (insn >> 7) & 0x1f; rs1 = (insn >> 15) & 0x1f; rs2 = (insn >> 20) & 0x1f; switch(opcode) { case 0x37: /* lui */ if (rd != 0) reg[rd] = (int32_t)(insn & 0xfffff000); @@ -898,9 +1069,36 @@ void execute_instruction() val = reg[rs1]; val2 = reg[rs2]; if (imm == 1) { funct3 = (insn >> 12) & 7; switch(funct3) { case 0: /* mul */ val = (int32_t)((int32_t)val * (int32_t)val2); break; case 1: /* mulh */ val = (int32_t)mulh32(val, val2); break; case 2:/* mulhsu */ val = (int32_t)mulhsu32(val, val2); break; case 3:/* mulhu */ val = (int32_t)mulhu32(val, val2); break; case 4:/* div */ val = div32(val, val2); break; case 5:/* divu */ val = (int32_t)divu32(val, val2); break; case 6:/* rem */ val = rem32(val, val2); break; case 7:/* remu */ val = (int32_t)remu32(val, val2); break; default: raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } } else { if (imm & ~0x20) { raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); @@ -1004,15 +1202,23 @@ void execute_instruction() } // compliance test specific: if bit 0 of gp (x3) is 0, it is a syscall, // otherwise it is the program end, with the exit code in the bits 31:1 if (begin_signature) { if (reg[3] & 1) { #ifdef DEBUG_OUTPUT printf("program end, result: %04x\n", reg[3] >> 1); #endif machine_running = false; return; } else { #ifdef DEBUG_OUTPUT printf("syscall: %04x\n", reg[3]); #endif raise_exception(CAUSE_USER_ECALL + priv, 0); } } else { // on real hardware, an exception is raised, the I-ECALL-01 compliance test tests this as well raise_exception(CAUSE_USER_ECALL + priv, 0); return; } break; @@ -1033,6 +1239,9 @@ void execute_instruction() return; } break; case 0x105: /* wfi */ // wait for interrupt: it is allowed to execute it as nop break; case 0x302: /* mret */ { if ((insn & 0x000fff80) || (priv < PRV_M)) { @@ -1189,16 +1398,44 @@ void execute_instruction() } } // returns realtime in nanoseconds int64_t get_clock() { struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); return ts.tv_sec * 1000000000LL + ts.tv_nsec; } void riscv_cpu_interp_x32() { /* we use a single execution loop to keep a simple control flow for emscripten */ while (machine_running) { // update timer, assuming 10 MHz clock (100 ns period) for the mtime counter mtime = get_clock() / 100ll; // for reproducible debug runs, you can use a fixed fixed increment per instruction //mtime += 10; // default value for next PC is next instruction, can be changed by branches or exceptions next_pc = pc + 4; // test for timer interrupt if (mtimecmp <= mtime) { mip |= MIP_MTIP; } if ((mip & mie) != 0 && (mstatus & MSTATUS_MIE)) { raise_interrupt(); } else { // normal instruction execution insn = get_insn32(pc); insn_counter++; #ifdef DEBUG_OUTPUT printf("%08x, mtime: %08x, mtimecmp: %08x\n", pc, mtime, mtimecmp); #endif execute_instruction(); } // test for misaligned fetches @@ -1208,40 +1445,29 @@ void riscv_cpu_interp_x32() // update current PC pc = next_pc; } #ifdef DEBUG_OUTPUT printf("done interp %lx int=%x mstatus=%lx prv=%d\n", (uint64_t)insn_counter, mip & mie, (uint64_t)mstatus, priv); #endif } int main(int argc, char** argv) { // automatic STDOUT flushing, no fflush needed setvbuf(stdout, NULL, _IONBF, 0); // parse command line const char* elf_file = NULL; const char* signature_file = NULL; for (int i = 1; i < argc; i++) { char* arg = argv[i]; if (arg == strstr(arg, "+signature=")) { signature_file = arg + 11; } else if (arg[0] != '-') { elf_file = arg; } } if (elf_file == NULL) { @@ -1252,11 +1478,13 @@ int main(int argc, char** argv) // open ELF file elf_version(EV_CURRENT); int fd = open(elf_file, O_RDONLY); if (fd == -1) { printf("can't open file %s\n", elf_file); return 1; } Elf *elf = elf_begin(fd, ELF_C_READ, NULL); // scan for symbol table Elf_Scn *scn = NULL; GElf_Shdr shdr; while ((scn = elf_nextscn(elf, scn)) != NULL) { @@ -1274,23 +1502,41 @@ int main(int argc, char** argv) if (strcmp(name, "end_signature") == 0) { end_signature = sym.st_value; } // for compliance test if (strcmp(name, "_start") == 0) { ram_start = sym.st_value; } // for zephyr if (strcmp(name, "__reset") == 0) { ram_start = sym.st_value; } if (strcmp(name, "__irq_wrapper") == 0) { mtvec = sym.st_value; } } } } #ifdef DEBUG_OUTPUT printf("begin_signature: 0x%08x\n", begin_signature); printf("end_signature: 0x%08x\n", end_signature); printf("start: 0x%08x\n", ram_start); #endif // scan for program while ((scn = elf_nextscn(elf, scn)) != NULL) { gelf_getshdr(scn, &shdr); if (shdr.sh_type == SHT_PROGBITS) { Elf_Data *data = elf_getdata(scn, NULL); if (shdr.sh_addr >= ram_start) { for (size_t i = 0; i < shdr.sh_size; i++) { ram[shdr.sh_addr + i - ram_start] = ((uint8_t *)data->d_buf)[i]; } } else { #ifdef DEBUG_OUTPUT printf("ignoring section at address 0x%08x\n", (uint32_t) shdr.sh_addr); #endif } } } @@ -1300,7 +1546,7 @@ int main(int argc, char** argv) close(fd); // run program in emulator pc = ram_start; riscv_cpu_interp_x32(); // write signature -
Frank-Buss created this gist
Nov 11, 2018 .There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters. Learn more about bidirectional Unicode charactersOriginal file line number Diff line number Diff line change @@ -0,0 +1,1321 @@ // RISCV emulator for the RV32I architecture // based on TinyEMU by Fabrice Bellard, see https://bellard.org/tinyemu/ // stripped down for RV32I only, all "gotos" removed, and fixed some bugs for the compliance test // by Frank Buss, 2018 // // requires libelf-dev: // sudo apt-get install libelf-dev // // compile: // g++ -O3 -Wall -lelf emulator.cpp -o emulator // // it is compatible to Spike for the command line arguments, which means you can run // the compliance test from https://github.com/riscv/riscv-compliance like this: // make RISCV_TARGET=spike RISCV_DEVICE=rv32i TARGET_SIM=/full/path/emulator variant // // original copyright: /* * RISCV emulator * * Copyright (c) 2016 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #define XLEN 32 #include <stdio.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <stdio.h> #include <stdlib.h> #include <stdint.h> #include <string.h> #include <unistd.h> #include <libelf.h> #include <gelf.h> // emulator RAM #define RAM_SIZE 0x8000 uint8_t ram[RAM_SIZE]; // virtual start address uint32_t ram_start; // privilege levels #define PRV_U 0 #define PRV_S 1 #define PRV_H 2 #define PRV_M 3 // CPU state uint32_t pc; uint32_t next_pc; uint32_t insn; uint32_t reg[32]; uint8_t priv = PRV_M; /* see PRV_x */ uint8_t fs; /* MSTATUS_FS value */ uint8_t mxl; /* MXL field in MISA register */ uint64_t insn_counter; int pending_exception; /* used during MMU exception handling */ uint32_t pending_tval; /* CSRs */ uint32_t mstatus; uint32_t mtvec; uint32_t mscratch; uint32_t mepc; uint32_t mcause; uint32_t mtval; uint32_t mhartid; /* ro */ uint32_t misa; uint32_t mie; uint32_t mip; uint32_t medeleg; uint32_t mideleg; uint32_t mcounteren; uint32_t stvec; uint32_t sscratch; uint32_t sepc; uint32_t scause; uint32_t stval; uint32_t satp; uint32_t scounteren; uint32_t load_res; /* for atomic LR/SC */ // exception causes #define CAUSE_MISALIGNED_FETCH 0x0 #define CAUSE_FAULT_FETCH 0x1 #define CAUSE_ILLEGAL_INSTRUCTION 0x2 #define CAUSE_BREAKPOINT 0x3 #define CAUSE_MISALIGNED_LOAD 0x4 #define CAUSE_FAULT_LOAD 0x5 #define CAUSE_MISALIGNED_STORE 0x6 #define CAUSE_FAULT_STORE 0x7 #define CAUSE_USER_ECALL 0x8 #define CAUSE_SUPERVISOR_ECALL 0x9 #define CAUSE_HYPERVISOR_ECALL 0xa #define CAUSE_MACHINE_ECALL 0xb #define CAUSE_FETCH_PAGE_FAULT 0xc #define CAUSE_LOAD_PAGE_FAULT 0xd #define CAUSE_STORE_PAGE_FAULT 0xf /* Note: converted to correct bit position at runtime */ #define CAUSE_INTERRUPT ((uint32_t)1 << 31) /* misa CSR */ #define MCPUID_SUPER (1 << ('S' - 'A')) #define MCPUID_USER (1 << ('U' - 'A')) #define MCPUID_I (1 << ('I' - 'A')) #define MCPUID_M (1 << ('M' - 'A')) #define MCPUID_A (1 << ('A' - 'A')) #define MCPUID_F (1 << ('F' - 'A')) #define MCPUID_D (1 << ('D' - 'A')) #define MCPUID_Q (1 << ('Q' - 'A')) #define MCPUID_C (1 << ('C' - 'A')) #define MIP_USIP (1 << 0) #define MIP_SSIP (1 << 1) #define MIP_HSIP (1 << 2) #define MIP_MSIP (1 << 3) #define MIP_UTIP (1 << 4) #define MIP_STIP (1 << 5) #define MIP_HTIP (1 << 6) #define MIP_MTIP (1 << 7) #define MIP_UEIP (1 << 8) #define MIP_SEIP (1 << 9) #define MIP_HEIP (1 << 10) #define MIP_MEIP (1 << 11) /* mstatus CSR */ #define MSTATUS_SPIE_SHIFT 5 #define MSTATUS_MPIE_SHIFT 7 #define MSTATUS_SPP_SHIFT 8 #define MSTATUS_MPP_SHIFT 11 #define MSTATUS_FS_SHIFT 13 #define MSTATUS_UXL_SHIFT 32 #define MSTATUS_SXL_SHIFT 34 #define MSTATUS_UIE (1 << 0) #define MSTATUS_SIE (1 << 1) #define MSTATUS_HIE (1 << 2) #define MSTATUS_MIE (1 << 3) #define MSTATUS_UPIE (1 << 4) #define MSTATUS_SPIE (1 << MSTATUS_SPIE_SHIFT) #define MSTATUS_HPIE (1 << 6) #define MSTATUS_MPIE (1 << MSTATUS_MPIE_SHIFT) #define MSTATUS_SPP (1 << MSTATUS_SPP_SHIFT) #define MSTATUS_HPP (3 << 9) #define MSTATUS_MPP (3 << MSTATUS_MPP_SHIFT) #define MSTATUS_FS (3 << MSTATUS_FS_SHIFT) #define MSTATUS_XS (3 << 15) #define MSTATUS_MPRV (1 << 17) #define MSTATUS_SUM (1 << 18) #define MSTATUS_MXR (1 << 19) #define MSTATUS_UXL_MASK ((uint64_t)3 << MSTATUS_UXL_SHIFT) #define MSTATUS_SXL_MASK ((uint64_t)3 << MSTATUS_SXL_SHIFT) /* Note: converted to correct bit position at runtime */ #define CAUSE_INTERRUPT ((uint32_t)1 << 31) int ctz32(uint32_t a) { int i; if (a == 0) return 32; for(i = 0; i < 32; i++) { if ((a >> i) & 1) return i; } return 32; } #define SSTATUS_MASK0 (MSTATUS_UIE | MSTATUS_SIE | \ MSTATUS_UPIE | MSTATUS_SPIE | \ MSTATUS_SPP | \ MSTATUS_FS | MSTATUS_XS | \ MSTATUS_SUM | MSTATUS_MXR) #define SSTATUS_MASK SSTATUS_MASK0 #define MSTATUS_MASK (MSTATUS_UIE | MSTATUS_SIE | MSTATUS_MIE | \ MSTATUS_UPIE | MSTATUS_SPIE | MSTATUS_MPIE | \ MSTATUS_SPP | MSTATUS_MPP | \ MSTATUS_FS | \ MSTATUS_MPRV | MSTATUS_SUM | MSTATUS_MXR) /* cycle and insn counters */ #define COUNTEREN_MASK ((1 << 0) | (1 << 2)) /* return the complete mstatus with the SD bit */ uint32_t get_mstatus(uint32_t mask) { uint32_t val; bool sd; val = mstatus | (fs << MSTATUS_FS_SHIFT); val &= mask; sd = ((val & MSTATUS_FS) == MSTATUS_FS) | ((val & MSTATUS_XS) == MSTATUS_XS); if (sd) val |= (uint32_t)1 << (XLEN - 1); return val; } void set_mstatus(uint32_t val) { uint32_t mod, mask; /* flush the TLBs if change of MMU config */ mod = mstatus ^ val; if ((mod & (MSTATUS_MPRV | MSTATUS_SUM | MSTATUS_MXR)) != 0 || ((mstatus & MSTATUS_MPRV) && (mod & MSTATUS_MPP) != 0)) { //tlb_flush_all(s); } fs = (val >> MSTATUS_FS_SHIFT) & 3; mask = MSTATUS_MASK & ~MSTATUS_FS; mstatus = (mstatus & ~mask) | (val & mask); } void invalid_csr(uint32_t *pval, uint32_t csr) { /* the 'time' counter is usually emulated */ if (csr != 0xc01 && csr != 0xc81) { //printf("csr_read: invalid CSR=0x%x\n", csr); } *pval = 0; } /* return -1 if invalid CSR. 0 if OK. 'will_write' indicate that the csr will be written after (used for CSR access check) */ int csr_read(uint32_t *pval, uint32_t csr, bool will_write) { uint32_t val; if (((csr & 0xc00) == 0xc00) && will_write) return -1; /* read-only CSR */ if (priv < ((csr >> 8) & 3)) return -1; /* not enough priviledge */ switch(csr) { case 0xc00: /* ucycle */ case 0xc02: /* uinstret */ { uint32_t counteren; if (priv < PRV_M) { if (priv < PRV_S) counteren = scounteren; else counteren = mcounteren; if (((counteren >> (csr & 0x1f)) & 1) == 0) { invalid_csr(pval, csr); return -1; } } } val = (int64_t)insn_counter; break; case 0xc80: /* mcycleh */ case 0xc82: /* minstreth */ { uint32_t counteren; if (priv < PRV_M) { if (priv < PRV_S) counteren = scounteren; else counteren = mcounteren; if (((counteren >> (csr & 0x1f)) & 1) == 0) { invalid_csr(pval, csr); return -1; } } } val = insn_counter >> 32; break; case 0x100: val = get_mstatus(SSTATUS_MASK); break; case 0x104: /* sie */ val = mie & mideleg; break; case 0x105: val = stvec; break; case 0x106: val = scounteren; break; case 0x140: val = sscratch; break; case 0x141: val = sepc; break; case 0x142: val = scause; break; case 0x143: val = stval; break; case 0x144: /* sip */ val = mip & mideleg; break; case 0x180: val = satp; break; case 0x300: val = get_mstatus((uint32_t)-1); break; case 0x301: val = misa; val |= (uint32_t)mxl << (XLEN - 2); break; case 0x302: val = medeleg; break; case 0x303: val = mideleg; break; case 0x304: val = mie; break; case 0x305: val = mtvec; break; case 0x306: val = mcounteren; break; case 0x340: val = mscratch; break; case 0x341: val = mepc; break; case 0x342: val = mcause; break; case 0x343: val = mtval; break; case 0x344: val = mip; break; case 0xb00: /* mcycle */ case 0xb02: /* minstret */ val = (int64_t)insn_counter; break; case 0xb80: /* mcycleh */ case 0xb82: /* minstreth */ val = insn_counter >> 32; break; case 0xf14: val = mhartid; break; default: invalid_csr(pval, csr); return -1; } *pval = val; return 0; } /* return -1 if invalid CSR, 0 if OK, 1 if the interpreter loop must be exited (e.g. XLEN was modified), 2 if TLBs have been flushed. */ int csr_write(uint32_t csr, uint32_t val) { uint32_t mask; #if defined(DUMP_CSR) printf("csr_write: csr=0x%03x val=0x", csr); print_uint32_t(val); printf("\n"); #endif switch(csr) { case 0x100: /* sstatus */ set_mstatus((mstatus & ~SSTATUS_MASK) | (val & SSTATUS_MASK)); break; case 0x104: /* sie */ mask = mideleg; mie = (mie & ~mask) | (val & mask); break; case 0x105: stvec = val & ~3; break; case 0x106: scounteren = val & COUNTEREN_MASK; break; case 0x140: sscratch = val; break; case 0x141: sepc = val & ~1; break; case 0x142: scause = val; break; case 0x143: stval = val; break; case 0x144: /* sip */ mask = mideleg; mip = (mip & ~mask) | (val & mask); break; case 0x180: /* no ASID implemented */ { int new_mode; new_mode = (val >> 31) & 1; satp = (val & (((uint32_t)1 << 22) - 1)) | (new_mode << 31); } //tlb_flush_all(s); return 2; case 0x300: set_mstatus(val); break; case 0x301: /* misa */ break; case 0x302: mask = (1 << (CAUSE_STORE_PAGE_FAULT + 1)) - 1; medeleg = (medeleg & ~mask) | (val & mask); break; case 0x303: mask = MIP_SSIP | MIP_STIP | MIP_SEIP; mideleg = (mideleg & ~mask) | (val & mask); break; case 0x304: mask = MIP_MSIP | MIP_MTIP | MIP_SSIP | MIP_STIP | MIP_SEIP; mie = (mie & ~mask) | (val & mask); break; case 0x305: mtvec = val & ~3; break; case 0x306: mcounteren = val & COUNTEREN_MASK; break; case 0x340: mscratch = val; break; case 0x341: mepc = val & ~1; break; case 0x342: mcause = val; break; case 0x343: mtval = val; break; case 0x344: mask = MIP_SSIP | MIP_STIP; mip = (mip & ~mask) | (val & mask); break; default: return -1; } return 0; } void handle_sret() { int spp, spie; spp = (mstatus >> MSTATUS_SPP_SHIFT) & 1; /* set the IE state to previous IE state */ spie = (mstatus >> MSTATUS_SPIE_SHIFT) & 1; mstatus = (mstatus & ~(1 << spp)) | (spie << spp); /* set SPIE to 1 */ mstatus |= MSTATUS_SPIE; /* set SPP to U */ mstatus &= ~MSTATUS_SPP; priv = spp; next_pc = sepc; } void handle_mret() { int mpp, mpie; mpp = (mstatus >> MSTATUS_MPP_SHIFT) & 3; /* set the IE state to previous IE state */ mpie = (mstatus >> MSTATUS_MPIE_SHIFT) & 1; mstatus = (mstatus & ~(1 << mpp)) | (mpie << mpp); /* set MPIE to 1 */ mstatus |= MSTATUS_MPIE; /* set MPP to U */ mstatus &= ~MSTATUS_MPP; priv = mpp; next_pc = mepc; } void raise_exception(uint32_t cause, uint32_t tval) { bool deleg; uint32_t causel; if (priv <= PRV_S) { /* delegate the exception to the supervisor priviledge */ if (cause & CAUSE_INTERRUPT) deleg = (mideleg >> (cause & (XLEN - 1))) & 1; else deleg = (medeleg >> cause) & 1; } else { deleg = 0; } causel = cause & 0x7fffffff; if (cause & CAUSE_INTERRUPT) causel |= (uint32_t)1 << (XLEN - 1); if (deleg) { scause = causel; sepc = pc; stval = tval; mstatus = (mstatus & ~MSTATUS_SPIE) | (((mstatus >> priv) & 1) << MSTATUS_SPIE_SHIFT); mstatus = (mstatus & ~MSTATUS_SPP) | (priv << MSTATUS_SPP_SHIFT); mstatus &= ~MSTATUS_SIE; priv = PRV_S; next_pc = stvec; } else { mcause = causel; mepc = pc; mtval = tval; mstatus = (mstatus & ~MSTATUS_MPIE) | (((mstatus >> priv) & 1) << MSTATUS_MPIE_SHIFT); mstatus = (mstatus & ~MSTATUS_MPP) | (priv << MSTATUS_MPP_SHIFT); mstatus &= ~MSTATUS_MIE; priv = PRV_M; next_pc = mtvec; } } uint32_t get_pending_irq_mask() { uint32_t pending_ints, enabled_ints; pending_ints = mip & mie; if (pending_ints == 0) return 0; enabled_ints = 0; switch(priv) { case PRV_M: if (mstatus & MSTATUS_MIE) enabled_ints = ~mideleg; break; case PRV_S: enabled_ints = ~mideleg; if (mstatus & MSTATUS_SIE) enabled_ints |= mideleg; break; default: case PRV_U: enabled_ints = -1; break; } return pending_ints & enabled_ints; } int raise_interrupt() { uint32_t mask; int irq_num; mask = get_pending_irq_mask(); if (mask == 0) return 0; irq_num = ctz32(mask); raise_exception(irq_num | CAUSE_INTERRUPT, 0); return -1; } uint32_t get_insn32(uint32_t pc) { uint32_t ptr = pc - ram_start; if (ptr > RAM_SIZE) return 1; uint8_t* p = ram + ptr; return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24); } int target_read_u8(uint8_t *pval, uint32_t addr) { addr -= ram_start; if (addr > RAM_SIZE) return 1; uint8_t* p = ram + addr; *pval = p[0]; return 0; } int target_read_u16(uint16_t *pval, uint32_t addr) { if (addr & 1) { pending_exception = CAUSE_MISALIGNED_LOAD; pending_tval = addr; return 1; } addr -= ram_start; if (addr > RAM_SIZE) return 1; uint8_t* p = ram + addr; *pval = p[0] | (p[1] << 8); return 0; } int target_read_u32(uint32_t *pval, uint32_t addr) { if (addr & 3) { pending_exception = CAUSE_MISALIGNED_LOAD; pending_tval = addr; return 1; } addr -= ram_start; if (addr > RAM_SIZE) return 1; uint8_t* p = ram + addr; *pval = p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24); return 0; } int target_write_u8(uint32_t addr, uint8_t val) { if (addr == 0xf0000000) { // test for UART output printf("%c", val); fflush(stdout); } else { addr -= ram_start; if (addr > RAM_SIZE - 1) return 1; uint8_t* p = ram + addr; p[0] = val & 0xff; } return 0; } int target_write_u16(uint32_t addr, uint16_t val) { if (addr & 1) { pending_exception = CAUSE_MISALIGNED_STORE; pending_tval = addr; return 1; } addr -= ram_start; if (addr > RAM_SIZE - 2) return 1; uint8_t* p = ram + addr; p[0] = val & 0xff; p[1] = (val >> 8) & 0xff; return 0; } int target_write_u32(uint32_t addr, uint32_t val) { if (addr & 3) { pending_exception = CAUSE_MISALIGNED_STORE; pending_tval = addr; return 1; } addr -= ram_start; if (addr > RAM_SIZE - 4) return 1; uint8_t* p = ram + addr; p[0] = val & 0xff; p[1] = (val >> 8) & 0xff; p[2] = (val >> 16) & 0xff; p[3] = (val >> 24) & 0xff; return 0; } bool machine_running = true; void execute_instruction() { uint32_t opcode, rd, rs1, rs2, funct3; int32_t imm, cond, err; uint32_t addr, val, val2; opcode = insn & 0x7f; rd = (insn >> 7) & 0x1f; rs1 = (insn >> 15) & 0x1f; rs2 = (insn >> 20) & 0x1f; switch(opcode) { case 0x37: /* lui */ if (rd != 0) reg[rd] = (int32_t)(insn & 0xfffff000); break; case 0x17: /* auipc */ if (rd != 0) reg[rd] = (int32_t)(pc + (int32_t)(insn & 0xfffff000)); break; case 0x6f: /* jal */ imm = ((insn >> (31 - 20)) & (1 << 20)) | ((insn >> (21 - 1)) & 0x7fe) | ((insn >> (20 - 11)) & (1 << 11)) | (insn & 0xff000); imm = (imm << 11) >> 11; if (rd != 0) reg[rd] = pc + 4; next_pc = (int32_t)(pc + imm); break; case 0x67: /* jalr */ imm = (int32_t)insn >> 20; val = pc + 4; next_pc = (int32_t)(reg[rs1] + imm) & ~1; if (rd != 0) reg[rd] = val; break; case 0x63: funct3 = (insn >> 12) & 7; switch(funct3 >> 1) { case 0: /* beq/bne */ cond = (reg[rs1] == reg[rs2]); break; case 2: /* blt/bge */ cond = ((int32_t)reg[rs1] < (int32_t)reg[rs2]); break; case 3: /* bltu/bgeu */ cond = (reg[rs1] < reg[rs2]); break; default: raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } cond ^= (funct3 & 1); if (cond) { imm = ((insn >> (31 - 12)) & (1 << 12)) | ((insn >> (25 - 5)) & 0x7e0) | ((insn >> (8 - 1)) & 0x1e) | ((insn << (11 - 7)) & (1 << 11)); imm = (imm << 19) >> 19; next_pc = (int32_t)(pc + imm); break; } break; case 0x03: /* load */ funct3 = (insn >> 12) & 7; imm = (int32_t)insn >> 20; addr = reg[rs1] + imm; switch(funct3) { case 0: /* lb */ { uint8_t rval; if (target_read_u8(&rval, addr)) { raise_exception(pending_exception, pending_tval); return; } val = (int8_t)rval; } break; case 1: /* lh */ { uint16_t rval; if (target_read_u16(&rval, addr)) { raise_exception(pending_exception, pending_tval); return; } val = (int16_t)rval; } break; case 2: /* lw */ { uint32_t rval; if (target_read_u32(&rval, addr)) { raise_exception(pending_exception, pending_tval); return; } val = (int32_t)rval; } break; case 4: /* lbu */ { uint8_t rval; if (target_read_u8(&rval, addr)) { raise_exception(pending_exception, pending_tval); return; } val = rval; } break; case 5: /* lhu */ { uint16_t rval; if (target_read_u16(&rval, addr)) { raise_exception(pending_exception, pending_tval); return; } val = rval; } break; default: raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } if (rd != 0) reg[rd] = val; break; case 0x23: /* store */ funct3 = (insn >> 12) & 7; imm = rd | ((insn >> (25 - 5)) & 0xfe0); imm = (imm << 20) >> 20; addr = reg[rs1] + imm; val = reg[rs2]; switch(funct3) { case 0: /* sb */ if (target_write_u8(addr, val)) { raise_exception(pending_exception, pending_tval); return; } break; case 1: /* sh */ if (target_write_u16(addr, val)) { raise_exception(pending_exception, pending_tval); return; } break; case 2: /* sw */ if (target_write_u32(addr, val)) { raise_exception(pending_exception, pending_tval); return; } break; default: raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } break; case 0x13: funct3 = (insn >> 12) & 7; imm = (int32_t)insn >> 20; switch(funct3) { case 0: /* addi */ val = (int32_t)(reg[rs1] + imm); break; case 1: /* slli */ if ((imm & ~(XLEN - 1)) != 0) { raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } val = (int32_t)(reg[rs1] << (imm & (XLEN - 1))); break; case 2: /* slti */ val = (int32_t)reg[rs1] < (int32_t)imm; break; case 3: /* sltiu */ val = reg[rs1] < (uint32_t)imm; break; case 4: /* xori */ val = reg[rs1] ^ imm; break; case 5: /* srli/srai */ if ((imm & ~((XLEN - 1) | 0x400)) != 0) { raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } if (imm & 0x400) val = (int32_t)reg[rs1] >> (imm & (XLEN - 1)); else val = (int32_t)((uint32_t)reg[rs1] >> (imm & (XLEN - 1))); break; case 6: /* ori */ val = reg[rs1] | imm; break; default: case 7: /* andi */ val = reg[rs1] & imm; break; } if (rd != 0) reg[rd] = val; break; case 0x33: imm = insn >> 25; val = reg[rs1]; val2 = reg[rs2]; if (imm == 1) { // mul, div and rem not implemented raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } else { if (imm & ~0x20) { raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } funct3 = ((insn >> 12) & 7) | ((insn >> (30 - 3)) & (1 << 3)); switch(funct3) { case 0: /* add */ val = (int32_t)(val + val2); break; case 0 | 8: /* sub */ val = (int32_t)(val - val2); break; case 1: /* sll */ val = (int32_t)(val << (val2 & (XLEN - 1))); break; case 2: /* slt */ val = (int32_t)val < (int32_t)val2; break; case 3: /* sltu */ val = val < val2; break; case 4: /* xor */ val = val ^ val2; break; case 5: /* srl */ val = (int32_t)((uint32_t)val >> (val2 & (XLEN - 1))); break; case 5 | 8: /* sra */ val = (int32_t)val >> (val2 & (XLEN - 1)); break; case 6: /* or */ val = val | val2; break; case 7: /* and */ val = val & val2; break; default: raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } } if (rd != 0) reg[rd] = val; break; case 0x73: funct3 = (insn >> 12) & 7; imm = insn >> 20; if (funct3 & 4) val = rs1; else val = reg[rs1]; funct3 &= 3; switch(funct3) { case 1: /* csrrw */ if (csr_read(&val2, imm, true)) { raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } val2 = (int32_t)val2; err = csr_write(imm, val); if (err < 0) { raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } if (rd != 0) reg[rd] = val2; if (err > 0) { //pc = pc + 4; } break; case 2: /* csrrs */ case 3: /* csrrc */ if (csr_read(&val2, imm, (rs1 != 0))) { raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } val2 = (int32_t)val2; if (rs1 != 0) { if (funct3 == 2) val = val2 | val; else val = val2 & ~val; err = csr_write(imm, val); if (err < 0) { raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } } else { err = 0; } if (rd != 0) reg[rd] = val2; break; case 0: switch(imm) { case 0x000: /* ecall */ if (insn & 0x000fff80) { raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } // compliance test specific: if bit 0 of gp (x3) is 0, it is a syscall, // otherwise it is the program end, with the exit code in the bits 31:1 if (reg[3] & 1) { //printf("program end, result: %04x\n", reg[3] >> 1); machine_running = false; return; } else { //printf("syscall: %04x\n", reg[3]); // on real hardware, an exception is raised, the I-ECALL-01 compliance test tests this as well raise_exception(CAUSE_USER_ECALL + priv, 0); } break; case 0x001: /* ebreak */ if (insn & 0x000fff80) { raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } raise_exception(CAUSE_BREAKPOINT, 0); return; case 0x102: /* sret */ { if ((insn & 0x000fff80) || (priv < PRV_S)) { raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } handle_sret(); return; } break; case 0x302: /* mret */ { if ((insn & 0x000fff80) || (priv < PRV_M)) { raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } handle_mret(); return; } break; default: if ((imm >> 5) == 0x09) { /* sfence.vma */ if ((insn & 0x00007f80) || (priv == PRV_U)) { raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } } else { raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } break; } break; default: raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } break; case 0x0f: /* misc-mem */ funct3 = (insn >> 12) & 7; switch(funct3) { case 0: /* fence */ if (insn & 0xf00fff80) { raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } break; case 1: /* fence.i */ if (insn != 0x0000100f) { raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } break; default: raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } break; case 0x2f: funct3 = (insn >> 12) & 7; switch(funct3) { case 2: { uint32_t rval; addr = reg[rs1]; funct3 = insn >> 27; switch(funct3) { case 2: /* lr.w */ if (rs2 != 0) { raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } if (target_read_u32(&rval, addr)) { raise_exception(pending_exception, pending_tval); return; } val = (int32_t)rval; load_res = addr; break; case 3: /* sc.w */ if (load_res == addr) { if (target_write_u32(addr, reg[rs2])) { raise_exception(pending_exception, pending_tval); return; } val = 0; } else { val = 1; } break; case 1: /* amiswap.w */ case 0: /* amoadd.w */ case 4: /* amoxor.w */ case 0xc: /* amoand.w */ case 0x8: /* amoor.w */ case 0x10: /* amomin.w */ case 0x14: /* amomax.w */ case 0x18: /* amominu.w */ case 0x1c: /* amomaxu.w */ if (target_read_u32(&rval, addr)) { raise_exception(pending_exception, pending_tval); return; } val = (int32_t)rval; val2 = reg[rs2]; switch(funct3) { case 1: /* amiswap.w */ break; case 0: /* amoadd.w */ val2 = (int32_t)(val + val2); break; case 4: /* amoxor.w */ val2 = (int32_t)(val ^ val2); break; case 0xc: /* amoand.w */ val2 = (int32_t)(val & val2); break; case 0x8: /* amoor.w */ val2 = (int32_t)(val | val2); break; case 0x10: /* amomin.w */ if ((int32_t)val < (int32_t)val2) val2 = (int32_t)val; break; case 0x14: /* amomax.w */ if ((int32_t)val > (int32_t)val2) val2 = (int32_t)val; break; case 0x18: /* amominu.w */ if ((uint32_t)val < (uint32_t)val2) val2 = (int32_t)val; break; case 0x1c: /* amomaxu.w */ if ((uint32_t)val > (uint32_t)val2) val2 = (int32_t)val; break; default: raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } if (target_write_u32(addr, val2)) { raise_exception(pending_exception, pending_tval); return; } break; default: raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } } break; default: raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } if (rd != 0) reg[rd] = val; break; default: raise_exception(CAUSE_ILLEGAL_INSTRUCTION, insn); return; } } void riscv_cpu_interp_x32() { pending_exception = -1; /* we use a single execution loop to keep a simple control flow for emscripten */ while (machine_running) { if ((mip & mie) != 0) { raise_interrupt(); } // test for misaligned fetches if (next_pc & 3) { raise_exception(CAUSE_MISALIGNED_FETCH, next_pc); } // update current PC pc = next_pc; // default value for next PC is next instruction, can be changed by branchces or exceptions next_pc = pc + 4; /* fast path */ insn = get_insn32(pc); insn_counter++; execute_instruction(); if (pending_exception >= 0) { raise_exception(pending_exception, pending_tval); pending_exception = -1; } } printf("done interp %lx int=%x mstatus=%lx prv=%d\n", (uint64_t)insn_counter, mip & mie, (uint64_t)mstatus, priv); } int main(int argc, char** argv) { // parse command line char* elf_file = NULL; char* signature_file = NULL; for (int i = 1; i < argc; i++) { char* arg = argv[i]; if (arg == strstr(arg, "+signature=")) { signature_file = arg + 11; //printf("signature file: %s\n", signature_file); } else if (arg[0] != '-') { elf_file = arg; //printf("ELF file: %s\n", elf_file); } } if (elf_file == NULL) { printf("missing ELF file\n"); return 1; } // open ELF file elf_version(EV_CURRENT); int fd = open(elf_file, O_RDONLY); Elf *elf = elf_begin(fd, ELF_C_READ, NULL); // scan for symbol table uint32_t begin_signature = 0; uint32_t end_signature = 0; Elf_Scn *scn = NULL; GElf_Shdr shdr; while ((scn = elf_nextscn(elf, scn)) != NULL) { gelf_getshdr(scn, &shdr); if (shdr.sh_type == SHT_SYMTAB) { Elf_Data *data = elf_getdata(scn, NULL); int count = shdr.sh_size / shdr.sh_entsize; for (int i = 0; i < count; i++) { GElf_Sym sym; gelf_getsym(data, i, &sym); char* name = elf_strptr(elf, shdr.sh_link, sym.st_name); if (strcmp(name, "begin_signature") == 0) { begin_signature = sym.st_value; } if (strcmp(name, "end_signature") == 0) { end_signature = sym.st_value; } if (strcmp(name, "_start") == 0) { ram_start = sym.st_value; } } } } //printf("begin_signature: 0x%04x\n", begin_signature); //printf("end_signature: 0x%04x\n", end_signature); //printf("start: 0x%04x\n", ram_start); // scan for program while ((scn = elf_nextscn(elf, scn)) != NULL) { gelf_getshdr(scn, &shdr); if (shdr.sh_type == SHT_PROGBITS) { Elf_Data *data = elf_getdata(scn, NULL); for (size_t i = 0; i < shdr.sh_size; i++) { ram[shdr.sh_addr + i - ram_start] = ((uint8_t *)data->d_buf)[i]; } } } // close ELF file elf_end(elf); close(fd); // run program in emulator next_pc = ram_start; riscv_cpu_interp_x32(); // write signature if (signature_file) { FILE* sf = fopen(signature_file, "w"); int size = end_signature - begin_signature; for (int i = 0; i < size / 16; i++) { for (int j = 0; j < 16; j++) { fprintf(sf, "%02x", ram[begin_signature + 15 - j - ram_start]); } begin_signature += 16; fprintf(sf, "\n"); } fclose(sf); } return 0; }