Skip to content

Instantly share code, notes, and snippets.

@JaydeepDPatil
Forked from EncodeTS/keras VGG-Face Model.md
Created August 12, 2018 07:58
Show Gist options
  • Select an option

  • Save JaydeepDPatil/0125a5c1b69ee52c3a0fbb4b9388fc4c to your computer and use it in GitHub Desktop.

Select an option

Save JaydeepDPatil/0125a5c1b69ee52c3a0fbb4b9388fc4c to your computer and use it in GitHub Desktop.
VGG-Face model for keras

VGG-Face model for Keras

This is the Keras model of VGG-Face.

It has been obtained through the following method:

  • vgg-face-keras:directly convert the vgg-face matconvnet model to keras model
  • vgg-face-keras-fc:first convert vgg-face caffe model to mxnet model,and then convert it to keras model

Details about the network architecture can be found in the following paper:

Deep Face Recognition
O. M. Parkhi, A. Vedaldi, A. Zisserman
British Machine Vision Conference, 2015

Please cite the paper if you use the models.

Contents:

model and usage demo: see vgg-face-keras.py or vgg-face-keras-fc.py

The only difference between them is the last few layers(see the code and you'll understand),but they produce the same result.

weights: 

Notice:

Please use this model in theano mode.

from keras.models import Model
from keras.layers import Input, Convolution2D, ZeroPadding2D, MaxPooling2D, Flatten, Dense, Dropout
from PIL import Image
import numpy as np
def vgg_face(weights_path=None):
img = Input(shape=(3, 224, 224))
pad1_1 = ZeroPadding2D(padding=(1, 1))(img)
conv1_1 = Convolution2D(64, 3, 3, activation='relu', name='conv1_1')(pad1_1)
pad1_2 = ZeroPadding2D(padding=(1, 1))(conv1_1)
conv1_2 = Convolution2D(64, 3, 3, activation='relu', name='conv1_2')(pad1_2)
pool1 = MaxPooling2D((2, 2), strides=(2, 2))(conv1_2)
pad2_1 = ZeroPadding2D((1, 1))(pool1)
conv2_1 = Convolution2D(128, 3, 3, activation='relu', name='conv2_1')(pad2_1)
pad2_2 = ZeroPadding2D((1, 1))(conv2_1)
conv2_2 = Convolution2D(128, 3, 3, activation='relu', name='conv2_2')(pad2_2)
pool2 = MaxPooling2D((2, 2), strides=(2, 2))(conv2_2)
pad3_1 = ZeroPadding2D((1, 1))(pool2)
conv3_1 = Convolution2D(256, 3, 3, activation='relu', name='conv3_1')(pad3_1)
pad3_2 = ZeroPadding2D((1, 1))(conv3_1)
conv3_2 = Convolution2D(256, 3, 3, activation='relu', name='conv3_2')(pad3_2)
pad3_3 = ZeroPadding2D((1, 1))(conv3_2)
conv3_3 = Convolution2D(256, 3, 3, activation='relu', name='conv3_3')(pad3_3)
pool3 = MaxPooling2D((2, 2), strides=(2, 2))(conv3_3)
pad4_1 = ZeroPadding2D((1, 1))(pool3)
conv4_1 = Convolution2D(512, 3, 3, activation='relu', name='conv4_1')(pad4_1)
pad4_2 = ZeroPadding2D((1, 1))(conv4_1)
conv4_2 = Convolution2D(512, 3, 3, activation='relu', name='conv4_2')(pad4_2)
pad4_3 = ZeroPadding2D((1, 1))(conv4_2)
conv4_3 = Convolution2D(512, 3, 3, activation='relu', name='conv4_3')(pad4_3)
pool4 = MaxPooling2D((2, 2), strides=(2, 2))(conv4_3)
pad5_1 = ZeroPadding2D((1, 1))(pool4)
conv5_1 = Convolution2D(512, 3, 3, activation='relu', name='conv5_1')(pad5_1)
pad5_2 = ZeroPadding2D((1, 1))(conv5_1)
conv5_2 = Convolution2D(512, 3, 3, activation='relu', name='conv5_2')(pad5_2)
pad5_3 = ZeroPadding2D((1, 1))(conv5_2)
conv5_3 = Convolution2D(512, 3, 3, activation='relu', name='conv5_3')(pad5_3)
pool5 = MaxPooling2D((2, 2), strides=(2, 2))(conv5_3)
flat = Flatten()(pool5)
fc6 = Dense(4096, activation='relu', name='fc6')(flat)
fc6_drop = Dropout(0.5)(fc6)
fc7 = Dense(4096, activation='relu', name='fc7')(fc6_drop)
fc7_drop = Dropout(0.5)(fc7)
out = Dense(2622, activation='softmax', name='fc8')(fc7_drop)
model = Model(input=img, output=out)
if weights_path:
model.load_weights(weights_path)
return model
if __name__ == "__main__":
im = Image.open('A.J._Buckley.jpg')
im = im.resize((224,224))
im = np.array(im).astype(np.float32)
# im[:,:,0] -= 129.1863
# im[:,:,1] -= 104.7624
# im[:,:,2] -= 93.5940
im = im.transpose((2,0,1))
im = np.expand_dims(im, axis=0)
# Test pretrained model
model = vgg_face('vgg-face-keras-fc.h5')
out = model.predict(im)
print(out[0][0])
from keras.models import Model
from keras.layers import Input, Convolution2D, ZeroPadding2D, MaxPooling2D, Flatten, Dropout, Activation
from PIL import Image
import numpy as np
def vgg_face(weights_path=None):
img = Input(shape=(3, 224, 224))
pad1_1 = ZeroPadding2D(padding=(1, 1))(img)
conv1_1 = Convolution2D(64, 3, 3, activation='relu', name='conv1_1')(pad1_1)
pad1_2 = ZeroPadding2D(padding=(1, 1))(conv1_1)
conv1_2 = Convolution2D(64, 3, 3, activation='relu', name='conv1_2')(pad1_2)
pool1 = MaxPooling2D((2, 2), strides=(2, 2))(conv1_2)
pad2_1 = ZeroPadding2D((1, 1))(pool1)
conv2_1 = Convolution2D(128, 3, 3, activation='relu', name='conv2_1')(pad2_1)
pad2_2 = ZeroPadding2D((1, 1))(conv2_1)
conv2_2 = Convolution2D(128, 3, 3, activation='relu', name='conv2_2')(pad2_2)
pool2 = MaxPooling2D((2, 2), strides=(2, 2))(conv2_2)
pad3_1 = ZeroPadding2D((1, 1))(pool2)
conv3_1 = Convolution2D(256, 3, 3, activation='relu', name='conv3_1')(pad3_1)
pad3_2 = ZeroPadding2D((1, 1))(conv3_1)
conv3_2 = Convolution2D(256, 3, 3, activation='relu', name='conv3_2')(pad3_2)
pad3_3 = ZeroPadding2D((1, 1))(conv3_2)
conv3_3 = Convolution2D(256, 3, 3, activation='relu', name='conv3_3')(pad3_3)
pool3 = MaxPooling2D((2, 2), strides=(2, 2))(conv3_3)
pad4_1 = ZeroPadding2D((1, 1))(pool3)
conv4_1 = Convolution2D(512, 3, 3, activation='relu', name='conv4_1')(pad4_1)
pad4_2 = ZeroPadding2D((1, 1))(conv4_1)
conv4_2 = Convolution2D(512, 3, 3, activation='relu', name='conv4_2')(pad4_2)
pad4_3 = ZeroPadding2D((1, 1))(conv4_2)
conv4_3 = Convolution2D(512, 3, 3, activation='relu', name='conv4_3')(pad4_3)
pool4 = MaxPooling2D((2, 2), strides=(2, 2))(conv4_3)
pad5_1 = ZeroPadding2D((1, 1))(pool4)
conv5_1 = Convolution2D(512, 3, 3, activation='relu', name='conv5_1')(pad5_1)
pad5_2 = ZeroPadding2D((1, 1))(conv5_1)
conv5_2 = Convolution2D(512, 3, 3, activation='relu', name='conv5_2')(pad5_2)
pad5_3 = ZeroPadding2D((1, 1))(conv5_2)
conv5_3 = Convolution2D(512, 3, 3, activation='relu', name='conv5_3')(pad5_3)
pool5 = MaxPooling2D((2, 2), strides=(2, 2))(conv5_3)
fc6 = Convolution2D(4096, 7, 7, activation='relu', name='fc6')(pool5)
fc6_drop = Dropout(0.5)(fc6)
fc7 = Convolution2D(4096, 1, 1, activation='relu', name='fc7')(fc6_drop)
fc7_drop = Dropout(0.5)(fc7)
fc8 = Convolution2D(2622, 1, 1, name='fc8')(fc7_drop)
flat = Flatten()(fc8)
out = Activation('softmax')(flat)
model = Model(input=img, output=out)
if weights_path:
model.load_weights(weights_path)
return model
if __name__ == "__main__":
im = Image.open('A.J._Buckley.jpg')
im = im.resize((224,224))
im = np.array(im).astype(np.float32)
# im[:,:,0] -= 129.1863
# im[:,:,1] -= 104.7624
# im[:,:,2] -= 93.5940
im = im.transpose((2,0,1))
im = np.expand_dims(im, axis=0)
# Test pretrained model
model = vgg_face('vgg-face-keras.h5')
out = model.predict(im)
print(out[0][0])
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment