Created
February 26, 2021 18:19
-
-
Save MrPanch/644b92e1c018b11835d9df50a0f75716 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import cv2 | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| def plot_one_image(image: np.ndarray) -> None: | |
| """ | |
| Отобразить изображение с помощью matplotlib. | |
| Вспомогательная функция. | |
| :param image: изображение для отображения | |
| :return: None | |
| """ | |
| fig, axs = plt.subplots(1, 1, figsize=(8, 7)) | |
| axs.imshow(image) | |
| axs.axis('off') | |
| plt.plot() | |
| plt.show() | |
| def find_road_number(image: np.ndarray) -> int: | |
| """ | |
| Найти номер дороги, на которой нет препятсвия в конце пути. | |
| :param image: исходное изображение | |
| :return: номер дороги, на котором нет препятсвия на дороге | |
| """ | |
| h, w, _ = image.shape | |
| # slice roads | |
| image = image / 255 | |
| x = 10 | |
| prev_val = 0 | |
| road_starts = [] | |
| road_ends = [] | |
| for y in range(1, image.shape[1] - 1): | |
| if np.greater(image[x,y], [0.9, 0.9, 0.1]).all(): | |
| cur_val = y | |
| if cur_val - prev_val == 1: | |
| prev_val = cur_val | |
| else: | |
| road_starts.append(prev_val) | |
| road_ends.append(cur_val) | |
| prev_val = cur_val | |
| # find car | |
| pix_sum = np.sum(image[image.shape[0]//2:, :], axis=0) | |
| blue_quan = pix_sum[:, 2] | |
| blue_quan = blue_quan / np.max(blue_quan) | |
| blues = [] | |
| for i in range(len(road_starts)): | |
| pix_slice = blue_quan[road_starts[i]:road_ends[i]] | |
| max_blue = np.max(pix_slice) | |
| blues.append(max_blue) | |
| car_place = blues.index(1) | |
| # find road to ride | |
| pix_sum = np.sum(image[:image.shape[0]//2, :], axis=0) | |
| red_quan = pix_sum[:, 0] | |
| red_quan = red_quan/np.max(red_quan) | |
| reds = [] | |
| for i in range(len(road_starts)): | |
| pix_slice = red_quan[road_starts[i]:road_ends[i]] | |
| mean_red = np.mean(pix_slice) | |
| reds.append(mean_red) | |
| index_min = min(range(len(reds)), key=reds.__getitem__) | |
| if car_place == index_min: | |
| print('Do not change the road') | |
| else: | |
| print('You should drive on road', index_min) | |
| road_number = index_min | |
| return road_number | |
| if __name__ == '__main__': | |
| test_image = cv2.imread('task_2/image_01.jpg') | |
| test_image = cv2.cvtColor(test_image, cv2.COLOR_BGR2RGB) | |
| # plot_one_image(test_image) | |
| find_road_number(test_image) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment